Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tsafi Danieli is active.

Publication


Featured researches published by Tsafi Danieli.


ChemBioChem | 2011

Chemical Synthesis and Expression of the HIV-1 Rev Protein

Peter Siman; Ofrah Blatt; Tal Moyal; Tsafi Danieli; Mario Lebendiker; Hilal A. Lashuel; Assaf Friedler; Ashraf Brik

The HIV‐1 Rev protein is responsible for shuttling partially spliced and unspliced viral mRNA out of the nucleus. This is a crucial step in the HIV‐1 lifecycle, thus making Rev an attractive target for the design of anti‐HIV drugs. Despite its importance, there is a lack of structural, biophysical, and quantitative information about Rev. This is mainly because of its tendency to undergo self‐assembly and aggregation; this makes it very difficult to express and handle. To address this knowledge gap, we have developed two new highly efficient and reproducible methods to prepare Rev in large quantities for biochemical and structural studies: 1) Chemical synthesis by using native chemical ligation coupled with desulfurization. Notably, we have optimized our synthesis to allow for a one‐pot approach for the ligation and desulfurization steps; this reduced the number of purification steps and enabled the obtaining of desired protein in excellent yield. Several challenges emerged during the design of this Rev synthesis, such as racemization, reduced solubility, formylation during thioester synthesis, and the necessity for using orthogonal protection during desulfurization; solutions to these problems were found. 2) A new method for expression and purification by using a vector that contained an HLT tag, followed by purification with a Ni column, a cation exchange column, and gel filtration. Both methods yielded highly pure and folded Rev. The CD spectra of the synthetic and recombinant Rev proteins were identical, and consistent with a predominantly helical structure. These advances should facilitate future studies that aim at a better understanding of the structure and function of the protein.


FEBS Letters | 2014

Production of prone-to-aggregate proteins

Mario Lebendiker; Tsafi Danieli

Expression of recombinant proteins in Escherichia coli (E. coli) remains the most popular and cost‐effective method for producing proteins in basic research and for pharmaceutical applications. Despite accumulating experience and methodologies developed over the years, production of recombinant proteins prone to aggregate in E. coli‐based systems poses a major challenge in most research applications. The challenge of manufacturing these proteins for pharmaceutical applications is even greater. This review will discuss effective methods to reduce and even prevent the formation of aggregates in the course of recombinant protein production. We will focus on important steps along the production path, which include cloning, expression, purification, concentration, and storage.


The EMBO Journal | 2011

Directionality of individual kinesin‐5 Cin8 motors is modulated by loop 8, ionic strength and microtubule geometry

Adina Gerson-Gurwitz; Christina Thiede; Natalia Movshovich; Vladimir Fridman; Maria Podolskaya; Tsafi Danieli; Stefan Lakämper; Dieter R. Klopfenstein; Christoph F. Schmidt; Larisa Gheber

Kinesin‐5 motors fulfil essential roles in mitotic spindle morphogenesis and dynamics as slow, processive microtubule (MT) plus‐end directed motors. The Saccharomyces cerevisiae kinesin‐5 Cin8 was found, surprisingly, to switch directionality. Here, we have examined directionality using single‐molecule fluorescence motility assays and live‐cell microscopy. On spindles, Cin8 motors mostly moved slowly (∼25 nm/s) towards the midzone, but occasionally also faster (∼55 nm/s) towards the spindle poles. In vitro, individual Cin8 motors could be switched by ionic conditions from rapid (380 nm/s) and processive minus‐end to slow plus‐end motion on single MTs. At high ionic strength, Cin8 motors rapidly alternated directionalities between antiparallel MTs, while driving steady plus‐end relative sliding. Between parallel MTs, plus‐end motion was only occasionally observed. Deletion of the uniquely large insert in loop 8 of Cin8 induced bias towards minus‐end motility and affected the ionic strength‐dependent directional switching of Cin8 in vitro. The deletion mutant cells exhibited reduced midzone‐directed motility and efficiency to support spindle elongation, indicating the importance of directionality control for the anaphase function of Cin8.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Molecular basis of the interaction between the antiapoptotic Bcl-2 family proteins and the proapoptotic protein ASPP2

Chen Katz; Hadar Benyamini; Shahar Rotem; Mario Lebendiker; Tsafi Danieli; Anat Iosub; Hadar Refaely; Monica Dines; Vered Bronner; Tsafrir Bravman; Deborah E. Shalev; Stefan Rüdiger; Assaf Friedler

We have characterized the molecular basis of the interaction between ASPP2 and Bcl-2, which are key proteins in the apoptotic pathway. The C-terminal ankyrin repeats and SH3 domain of ASPP2 (ASPP2Ank-SH3) mediate its interactions with the antiapoptotic protein Bcl-2. We used biophysical and computational methods to identify the interaction sites of Bcl-2 and its homologues with ASPP2. Using peptide array screening, we found that ASPP2Ank-SH3 binds two homologous sites in all three Bcl proteins tested: (i) the conserved BH4 motif, and (ii) a binding site for proapoptotic regulators. Quantitative binding studies revealed that binding of ASPP2Ank-SH3 to the Bcl-2 family members is selective at two levels: (i) interaction with Bcl-2-derived peptides is the tightest compared to peptides from the other family members, and (ii) within Bcl-2, binding of ASPP2Ank-SH3 to the BH4 domain is tightest. Sequence alignment of the ASPP2-binding peptides combined with binding studies of mutated peptides revealed that two nonconserved positions where only Bcl-2 contains positively charged residues account for its tighter binding. The experimental binding results served as a basis for docking analysis, by which we modeled the complexes of ASPP2Ank-SH3 with the full-length Bcl proteins. Using peptide arrays and quantitative binding studies, we found that Bcl-2 binds three loops in ASPP2Ank-SH3 with similar affinity, in agreement with our predicted model. Based on our results, we propose a mechanism in which ASPP2 induces apoptosis by inhibiting functional sites of the antiapoptotic Bcl-2 proteins.


Methods of Molecular Biology | 2011

Purification of proteins fused to maltose-binding protein.

Mario Lebendiker; Tsafi Danieli

Maltose-binding protein (MBP) is one of the most popular fusion partners being used for producing recombinant proteins in bacterial cells. MBP allows one to use a simple capture affinity step on amylose-agarose columns, resulting in a protein that is often 70-90% pure. In addition to protein-isolation applications, MBP provides a high degree of translation and facilitates the proper folding and solubility of the target protein. This chapter describes efficient procedures for isolating highly purified MBP-target proteins. Special attention is given to considerations for downstream applications such as structural determination studies, protein activity assays, and assessing the chemical characteristics of the target protein.


PLOS ONE | 2009

Thrombospondin-1-N-Terminal Domain Induces a Phagocytic State and Thrombospondin-1-C-Terminal Domain Induces a Tolerizing Phenotype in Dendritic Cells

Adi Tabib; Alon Krispin; Uriel Trahtemberg; Inna Verbovetski; Mario Lebendiker; Tsafi Danieli; Dror Mevorach

In our previous study, we have found that thrombospondin-1 (TSP-1) is synthesized de novo upon monocyte and neutrophil apoptosis, leading to a phagocytic and tolerizing phenotype of dendritic cells (DC), even prior to DC-apoptotic cell interaction. Interestingly, we were able to show that heparin binding domain (HBD), the N-terminal portion of TSP-1, was cleaved and secreted simultaneously in a caspase- and serine protease- dependent manner. In the current study we were interested to examine the role of HBD in the clearance of apoptotic cells, and whether the phagocytic and tolerizing state of DCs is mediated by the HBD itself, or whether the entire TSP-1 is needed. Therefore, we have cloned the human HBD, and compared its interactions with DC to those with TSP-1. Here we show that rHBD by itself is not directly responsible for immune paralysis and tolerizing phenotype of DCs, at least in the monomeric form, but has a significant role in rendering DCs phagocytic. Binding of TSP-1-C-terminal domain on the other hand induces a tolerizing phenotype in dendritic cells.


Protein Expression and Purification | 2009

High yield expression of biologically active recombinant full length human tuftelin protein in baculovirus-infected insect cells

Boaz Shay; Yael Gruenbaum-Cohen; Abigail S. Tucker; Angela L. Taylor; Eli Rosenfeld; Amir Haze; Leah Dafni; Yoav Leiser; Eran Fermon; Tsafi Danieli; Anat Blumenfeld; Dan Deutsch

Tuftelin is an acidic protein expressed at very early stages of mouse odontogenesis. It was suggested to play a role during epithelial-mesenchymal interactions, and later, when enamel formation commences, to be involved in enamel mineralization. Tuftelin was also detected in several normal soft tissues of different origins and some of their corresponding cancerous tissues. Tuftelin is expressed in low quantities, and undergoes degradation in the enamel extracellular matrix. To investigate the structure and function of tuftelin, the full length recombinant human tuftelin protein was produced. The full length human tuftelin cDNA was cloned using Gateway recombination into the Bac-to-Bac system compatible transfer vector pDest10. This vector adds a hexahistidine tag to the N-terminus of the expressed protein, enabling one-step affinity purification on nickel column. The recombinant human tuftelin protein was transposed into the bacmid and expressed in Spodoptera frugiperda (Sf9) insect cells. The yield of the purified, his-tagged recombinant full length human Tuftelin (rHTuft+) was 5-8 mg/L culture. rHTuft+ was characterized by SDS-PAGE, Western blot, ESI-TOF spectrometry, restriction mapping and MS/MS sequencing. The availability of the purified, full length recombinant human tuftelin protein opened up the possibility to investigate novel functions of tuftelin. Application of rHTuft+ agarose beads onto embryonic mouse mandibular explants caused changes in the surrounding epithelial cells, including morphology, orientation and spatial organization. Further studies using DiI labeling, revealed that rHTuft+, placed on the tooth germ region, brought about recruitment of adjacent embryonic mesenchymal cells. These findings support the hypothesis that tuftelin plays an important role during embryogenesis.


BMC Research Notes | 2014

The Trip Adviser guide to the protein science world: a proposal to improve the awareness concerning the quality of recombinant proteins

Mario Lebendiker; Tsafi Danieli; Ario de Marco

In many research articles, where protein purification is required for various assays, (protein-protein interactions, activity assays, etc.), we always have access to the final results, but seldom have access to the raw data required for an accurate evaluation of the protein quality. This data is extremely important on one hand to critically evaluate the quality of the proteins used in the described research and, on the other hand, to allow other laboratories to safely use the described procedure in a reproducible manner. We herby propose to include a standardized methodology that can easily be incorporated in research papers. Moreover, this methodology can be utilized as a “quality control” ladder, where the more information given, will lead to a higher ranking of the article. This “quality control” stamp will allow researchers retrieving relevant and useful materials and methods in the field of protein research.


Journal of Inorganic Biochemistry | 2016

Unbound position II in MXCXXC metallochaperone model peptides impacts metal binding mode and reactivity: Distinct similarities to whole proteins.

Michal S. Shoshan; Noa Dekel; Wojciech Goch; Deborah E. Shalev; Tsafi Danieli; Mario Lebendiker; Wojciech Bal; Edit Y. Tshuva

The effect of position II in the binding sequence of copper metallochaperones, which varies between Thr and His, was investigated through structural analysis and affinity and oxidation kinetic studies of model peptides. A first Cys-Cu(I)-Cys model obtained for the His peptide at acidic and neutral pH, correlated with higher affinity and more rapid oxidation of its complex; in contrast, the Thr peptide with the Cys-Cu(I)-Met coordination under neutral conditions demonstrated weaker and pH dependent binding. Studies with human antioxidant protein 1 (Atox1) and three of its mutants where S residues were replaced with Ala suggested that (a) the binding affinity is influenced more by the binding sequence than by the protein fold (b) pH may play a role in binding reactivity, and (c) mutating the Met impacted the affinity and oxidation rate more drastically than did mutating one of the Cys, supporting its important role in protein function. Position II thus plays a dominant role in metal binding and transport.


Proceedings of the National Academy of Sciences of the United States of America | 2015

NhaA antiporter functions using 10 helices, and an additional 2 contribute to assembly/stability

Etana Padan; Tsafi Danieli; Yael Keren; Dudu Alkoby; Gal Masrati; Turkan Haliloglu; Nir Ben-Tal; Abraham Rimon

Significance The principal Na+/H+ antiporter of Escherichia coli (Ec-NhaA) is the best-characterized of the pH-regulated Na+/H+ exchangers that control cellular Na+ and H+ homeostasis, and the human homologues are potentially important drug targets. Identification of the essential components of NhaA is vital to understanding the function of the protein and has implications for evolution and protein design. Ec-NhaA has 12 helices, 2 of which (VI and VII) are absent from the growing number of secondary transporters that share the unique Ec-NhaA structural fold. Mutants deleted of helices VI and VII, which form an α-hairpin at the dimer interface, are defective in the assembly/stability of the Ec-NhaA dimer but retain significant transport activity, as well as regulatory properties. The Escherichia coli Na+/H+ antiporter (Ec-NhaA) is the best-characterized of all pH-regulated Na+/H+ exchangers that control cellular Na+ and H+ homeostasis. Ec-NhaA has 12 helices, 2 of which (VI and VII) are absent from other antiporters that share the Ec-NhaA structural fold. This α-hairpin is located in the dimer interface of the Ec-NhaA homodimer together with a β-sheet. Here we examine computationally and experimentally the role of the α-hairpin in the stability, dimerization, transport, and pH regulation of Ec-NhaA. Evolutionary analysis (ConSurf) indicates that the VI–VII helical hairpin is much less conserved than the remaining transmembrane region. Moreover, normal mode analysis also shows that intact NhaA and a variant, deleted of the α-hairpin, share similar dynamics, suggesting that the structure may be dispensable. Thus, two truncated Ec-NhaA mutants were constructed, one deleted of the α-hairpin and another also lacking the β-sheet. The mutants were studied at physiological pH in the membrane and in detergent micelles. The findings demonstrate that the truncated mutants retain significant activity and regulatory properties but are defective in the assembly/stability of the Ec-NhaA dimer.

Collaboration


Dive into the Tsafi Danieli's collaboration.

Top Co-Authors

Avatar

Mario Lebendiker

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Assaf Friedler

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Yael Elbaz

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Chen Katz

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Deborah E. Shalev

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Hadar Benyamini

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Shahar Rotem

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Shimon Schuldiner

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

A. Copty

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Abraham Loyter

Hebrew University of Jerusalem

View shared research outputs
Researchain Logo
Decentralizing Knowledge