Tsang-Hsiu Wang
University of Alabama
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tsang-Hsiu Wang.
Journal of Physical Chemistry A | 2010
Tsang-Hsiu Wang; Alejandra M. Navarrete-López; Shenggang Li; David A. Dixon; James L. Gole
The hydrolysis of titanium tetrachloride (TiCl(4)) to produce titanium dioxide (TiO(2)) nanoparticles has been studied to provide insight into the mechanism for forming these nanoparticles. We provide calculations of the potential energy surfaces, the thermochemistry of the intermediates, and the reaction paths for the initial steps in the hydrolysis of TiCl(4). We assess the role of the titanium oxychlorides (Ti(x)O(y)Cl(z); x = 2-4, y = 1, 3-6, and z = 2, 4, 6) and their viable reaction paths. Using transition-state theory and RRKM theory, we predicted rate constants including the effect of tunneling. Heats of formation at 0 and 298 K are predicted for TiCl(4), TiCl(3)OH, TiOCl(2), TiOClOH, TiCl(2)(OH)(2), TiCl(OH)(3), Ti(OH)(4), and TiO(2) using the CCSD(T) method with correlation consistent basis sets extrapolated to the complete basis set limit and compared with the available experimental data. Clustering energies and heats of formation are calculated for neutral clusters. The calculated heats of formation were used to study condensation reactions that eliminate HCl or H(2)O. The reaction energy is substantially endothermic if more than two HCl molecules are eliminated. The results show that the mechanisms leading to formation of TiO(2) nanoparticles and larger ones are complicated and will have a strong dependence on the experimental conditions.
Inorganic Chemistry | 2010
Daniel J. Grant; Tsang-Hsiu Wang; David A. Dixon; Karl O. Christe
Atomization energies at 0 K and heats of formation at 0 and 298 K are predicted for XeF(3)(+), XeF(3)(-), XeF(5)(+), XeF(7)(+), XeF(7)(-), and XeF(8) from coupled cluster theory (CCSD(T)) calculations with effective core potential correlation-consistent basis sets for Xe and including correlation of the nearest core electrons. Additional corrections are included to achieve near chemical accuracy of +/-1 kcal/mol. Vibrational zero point energies were computed at the MP2 level of theory. Unlike the other neutral xenon fluorides, XeF(8) is predicted to be thermodynamically unstable with respect to loss of F(2) with the reaction calculated to be exothermic by 22.3 kcal/mol at 0 K. XeF(7)(+) is also predicted to be thermodynamically unstable with respect to the loss of F(2) by 24.1 kcal/mol at 0 K. For XeF(3)(+), XeF(5)(+), XeF(3)(-), XeF(5)(-), and XeF(7)(-), the reactions for loss of F(2) are endothermic by 14.8, 37.8, 38.2, 59.6, and 31.9 kcal/mol at 0 K, respectively. The F(+) affinities of Xe, XeF(2), XeF(4), and XeF(6) are predicted to be 165.1, 155.3, 172.7, and 132.5 kcal/mol, and the corresponding F(-) affinities are 6.3, 19.9, 59.1, and 75.0 kcal/mol at 0 K, respectively.
Inorganic Chemistry | 2011
Daniel J. Grant; Tsang-Hsiu Wang; Monica Vasiliu; David A. Dixon; Karl O. Christe
Atomization energies at 0 K and heats of formation at 0 and 298 K are predicted for the neutral and ionic N(x)F(y) and O(x)F(y) systems using coupled cluster theory with single and double excitations and including a perturbative triples correction (CCSD(T)) method with correlation consistent basis sets extrapolated to the complete basis set (CBS) limit. To achieve near chemical accuracy (±1 kcal/mol), three corrections to the electronic energy were added to the frozen core CCSD(T)/CBS binding energies: corrections for core-valence, scalar relativistic, and first order atomic spin-orbit effects. Vibrational zero point energies were computed at the CCSD(T) level of theory where possible. The calculated heats of formation are in good agreement with the available experimental values, except for FOOF because of the neglect of higher order correlation corrections. The F(+) affinity in the N(x)F(y) series increases from N(2) to N(2)F(4) by 63 kcal/mol, while that in the O(2)F(y) series decreases by 18 kcal/mol from O(2) to O(2)F(2). Neither N(2) nor N(2)F(4) is predicted to bind F(-), and N(2)F(2) is a very weak Lewis acid with an F(-) affinity of about 10 kcal/mol for either the cis or trans isomer. The low F(-) affinities of the nitrogen fluorides explain why, in spite of the fact that many stable nitrogen fluoride cations are known, no nitrogen fluoride anions have been isolated so far. For example, the F(-) affinity of NF is predicted to be only 12.5 kcal/mol which explains the numerous experimental failures to prepare NF(2)(-) salts from the well-known strong acid HNF(2). The F(-) affinity of O(2) is predicted to have a small positive value and increases for O(2)F(2) by 23 kcal/mol, indicating that the O(2)F(3)(-) anion might be marginally stable at subambient temperatures. The calculated adiabatic ionization potentials and electron affinities are in good agreement with experiment considering that many of the experimental values are for vertical processes.
Inorganic Chemistry | 2010
Karl O. Christe; David A. Dixon; Daniel J. Grant; Ralf Haiges; Fook S. Tham; Ashwani Vij; Vandana Vij; Tsang-Hsiu Wang; William W. Wilson
N(2)F(+) salts are important precursors in the synthesis of N(5)(+) compounds, and better methods are reported for their larger scale production. A new, marginally stable N(2)F(+) salt, N(2)F(+)Sn(2)F(9)(-), was prepared and characterized. An ordered crystal structure was obtained for N(2)F(+)Sb(2)F(11)(-), resulting in the first observation of individual N[triple bond]N and N-F bond distances for N(2)F(+) in the solid phase. The observed N[triple bond]N and N-F bond distances of 1.089(9) and 1.257(8) A, respectively, are among the shortest experimentally observed N-N and N-F bonds. High-level electronic structure calculations at the CCSD(T) level with correlation-consistent basis sets extrapolated to the complete basis limit show that cis-N(2)F(2) is more stable than trans-N(2)F(2) by 1.4 kcal/mol at 298 K. The calculations also demonstrate that the lowest uncatalyzed pathway for the trans-cis isomerization of N(2)F(2) has a barrier of 60 kcal/mol and involves rotation about the N=N double bond. This barrier is substantially higher than the energy required for the dissociation of N(2)F(2) to N(2) and 2 F. Therefore, some of the N(2)F(2) dissociates before undergoing an uncatalyzed isomerization, with some of the dissociation products probably catalyzing the isomerization. Furthermore, it is shown that the trans-cis isomerization of N(2)F(2) is catalyzed by strong Lewis acids, involves a planar transition state of symmetry C(s), and yields a 9:1 equilibrium mixture of cis-N(2)F(2) and trans-N(2)F(2). Explanations are given for the increased reactivity of cis-N(2)F(2) with Lewis acids and the exclusive formation of cis-N(2)F(2) in the reaction of N(2)F(+) with F(-). The geometry and vibrational frequencies of the F(2)N=N isomer have also been calculated and imply strong contributions from ionic N(2)F(+) F(-) resonance structures, similar to those in F(3)NO and FNO.
Inorganic Chemistry | 2010
Daniel J. Grant; Tsang-Hsiu Wang; David A. Dixon; Karl O. Christe
Atomization energies at 0 K and heats of formation at 0 and 298 K are predicted for XeF(3)(+), XeF(3)(-), XeF(5)(+), XeF(7)(+), XeF(7)(-), and XeF(8) from coupled cluster theory (CCSD(T)) calculations with effective core potential correlation-consistent basis sets for Xe and including correlation of the nearest core electrons. Additional corrections are included to achieve near chemical accuracy of +/-1 kcal/mol. Vibrational zero point energies were computed at the MP2 level of theory. Unlike the other neutral xenon fluorides, XeF(8) is predicted to be thermodynamically unstable with respect to loss of F(2) with the reaction calculated to be exothermic by 22.3 kcal/mol at 0 K. XeF(7)(+) is also predicted to be thermodynamically unstable with respect to the loss of F(2) by 24.1 kcal/mol at 0 K. For XeF(3)(+), XeF(5)(+), XeF(3)(-), XeF(5)(-), and XeF(7)(-), the reactions for loss of F(2) are endothermic by 14.8, 37.8, 38.2, 59.6, and 31.9 kcal/mol at 0 K, respectively. The F(+) affinities of Xe, XeF(2), XeF(4), and XeF(6) are predicted to be 165.1, 155.3, 172.7, and 132.5 kcal/mol, and the corresponding F(-) affinities are 6.3, 19.9, 59.1, and 75.0 kcal/mol at 0 K, respectively.
Inorganic Chemistry | 2010
Daniel J. Grant; Tsang-Hsiu Wang; David A. Dixon; Karl O. Christe
Atomization energies at 0 K and heats of formation at 0 and 298 K are predicted for XeF(3)(+), XeF(3)(-), XeF(5)(+), XeF(7)(+), XeF(7)(-), and XeF(8) from coupled cluster theory (CCSD(T)) calculations with effective core potential correlation-consistent basis sets for Xe and including correlation of the nearest core electrons. Additional corrections are included to achieve near chemical accuracy of +/-1 kcal/mol. Vibrational zero point energies were computed at the MP2 level of theory. Unlike the other neutral xenon fluorides, XeF(8) is predicted to be thermodynamically unstable with respect to loss of F(2) with the reaction calculated to be exothermic by 22.3 kcal/mol at 0 K. XeF(7)(+) is also predicted to be thermodynamically unstable with respect to the loss of F(2) by 24.1 kcal/mol at 0 K. For XeF(3)(+), XeF(5)(+), XeF(3)(-), XeF(5)(-), and XeF(7)(-), the reactions for loss of F(2) are endothermic by 14.8, 37.8, 38.2, 59.6, and 31.9 kcal/mol at 0 K, respectively. The F(+) affinities of Xe, XeF(2), XeF(4), and XeF(6) are predicted to be 165.1, 155.3, 172.7, and 132.5 kcal/mol, and the corresponding F(-) affinities are 6.3, 19.9, 59.1, and 75.0 kcal/mol at 0 K, respectively.
Journal of Physical Chemistry C | 2011
Tsang-Hsiu Wang; Zongtang Fang; Natalie W. Gist; Shenggang Li; David A. Dixon; James L. Gole
Inorganic Chemistry | 2007
David A. Dixon; Tsang-Hsiu Wang; Daniel J. Grant; Kirk A. Peterson; Karl O. Christe; Gary J. Schrobilgen
Chemical Physics Letters | 2011
Tsang-Hsiu Wang; James L. Gole; Mark G. White; Clifton Watkins; Shane C. Street; Zongtang Fang; David A. Dixon
Journal of Physical Chemistry C | 2010
Tsang-Hsiu Wang; David A. Dixon; Michael A. Henderson