Tsezi A. Egorov
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tsezi A. Egorov.
Peptides | 2005
Tsezi A. Egorov; Tatyana I. Odintsova; Vitaliy A. Pukhalsky; Eugene V. Grishin
From seeds of Triticum kiharae Dorof. et Migusch., 24 novel anti-microbial peptides were isolated and characterized by a combination of three-step HPLC (affinity, size-exclusion and reversed-phase) with matrix-assisted laser-desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry and Edman degradation. Based on sequence similarity and cysteine motifs, partially sequenced peptides were assigned to 7 families: defensins, thionins, lipid-transfer proteins, hevein-like peptides, knottin-like peptides, glycine-rich peptides, and MBP-1 homologs. A novel subfamily of defensins consisting of 6 peptides and a new family of glycine-rich (8 peptides with different repeat motifs) were identified. Three 6-cysteine knottin-like peptides represented by N- and C-terminally truncated variants revealed no sequence homology to any known plant anti-microbial peptides. A new 8-cysteine hevein-like peptide and three 4-cysteine peptides homologous to MBP-1 from maize were isolated. This is the first communication on the occurrence of nearly all families of plant anti-microbial peptides in a single species.
Journal of Protein Chemistry | 2003
Tatyana I. Odintsova; Eva-Christina Müller; A. V. Ivanov; Tsezi A. Egorov; Ralf Bienert; Serguei N. Vladimirov; Susanne Kostka; Albrecht Otto; Brigitte Wittmann-Liebold; G. G. Karpova
The 60S ribosomal proteins were isolated from ribosomes of human placenta and separated by reversed phase HPLC. The fractions obtained were subjected to trypsin and Glu-C digestion and analyzed by mass fingerprinting (MALDI-TOF), MS/MS (ESI), and Edman sequencing. Forty-six large subunit proteins were found, 22 of which showed masses in accordance with the SwissProt database (June 2002) masses (proteins L6, L7, L9, L13, L15, L17, L18, L21, L22, L24, L26, L27, L30, L32, L34, L35, L36, L37, L37A, L38, L39, L41). Eleven (proteins L7, L10A, L11, L12, L13A, L23, L23A, L27A, L28, L29, and P0) resulted in mass changes that are consistent with N-terminal loss of methionine, acetylation, internal methylation, or hydroxylation. A loss of methionine without acetylation was found for protein L8 and L17. For nine proteins (L3, L4, L5, L7A, L10, L14, L19, L31, and L40), the molecular masses could not be determined. Proteins P1 and protein L3-like were not identified by the methods applied.
Plant Physiology and Biochemistry | 2011
Eugene A. Rogozhin; Yulia I. Oshchepkova; Tatyiana I. Odintsova; Natalia V. Khadeeva; Olga Veshkurova; Tsezi A. Egorov; Eugene V. Grishin; Shavkat Salikhov
From seeds of Nigella sativa L. (Ranunculaceae), an endemic plant of Uzbekistan, two novel defensins named Ns-D1 and Ns-D2, were isolated and sequenced. The peptides differ by a single amino acid residue and show high sequence similarity to Raphanus sativus L. defensins Rs-AFP1 and Rs-AFP2. The Ns-D1 and Ns-D2 defensins display strong although divergent antifungal activity towards a number of phytopathogenic fungi. High antifungal activity of N. sativa defensins makes them promising candidates for engineering pathogen-resistant plants.
FEBS Journal | 2009
Tatyana I. Odintsova; Alexander A. Vassilevski; Anna A. Slavokhotova; Alexander Kh. Musolyamov; Ekaterina I. Finkina; Natalia V. Khadeeva; Eugene A. Rogozhin; Tatyana V. Korostyleva; Vitalii A. Pukhalsky; Eugene V. Grishin; Tsezi A. Egorov
Two forms of a novel antimicrobial peptide (AMP), named WAMP‐1a and WAMP‐1b, that differ by a single C‐terminal amino acid residue and belong to a new structural type of plant AMP were purified from seeds of Triticum kiharae Dorof. et Migusch. Although WAMP‐1a and WAMP‐1b share similarity with hevein‐type peptides, they possess 10 cysteine residues arranged in a unique cysteine motif which is distinct from those described previously for plant AMPs, but is characteristic of the chitin‐binding domains of cereal class I chitinases. An unusual substitution of a serine for a glycine residue in the chitin‐binding domain was detected for the first time in hevein‐like polypeptides. Recombinant WAMP‐1a was successfully produced in Escherichia coli. This is the first case of high‐yield production of a cysteine‐rich plant AMP from a synthetic gene. Assays of recombinant WAMP‐1a activity showed that the peptide possessed high broad‐spectrum inhibitory activity against diverse chitin‐containing and chitin‐free pathogens, with IC50 values in the micromolar range. The discovery of a new type of AMP active against structurally dissimilar microorganisms implies divergent modes of action and discloses the complexity of plant–microbe interactions.
Journal of Biological Chemistry | 2011
Svetlana B. Nolde; Alexander A. Vassilevski; Eugene A. Rogozhin; Nikolay A. Barinov; Tamara A. Balashova; Olga V. Samsonova; Yuri V. Baranov; Alexey V. Feofanov; Tsezi A. Egorov; Alexander S. Arseniev; Eugene V. Grishin
This study presents purification, activity characterization, and 1H NMR study of the novel antifungal peptide EcAMP1 from kernels of barnyard grass Echinochloa crus-galli. The peptide adopts a disulfide-stabilized α-helical hairpin structure in aqueous solution and thus represents a novel fold among naturally occurring antimicrobial peptides. Micromolar concentrations of EcAMP1 were shown to inhibit growth of several fungal phytopathogens. Confocal microscopy revealed intensive EcAMP1 binding to the surface of fungal conidia followed by internalization and accumulation in the cytoplasm without disturbance of membrane integrity. Close spatial structure similarity between EcAMP1, the trypsin inhibitor VhTI from seeds of Veronica hederifolia, and some scorpion and cone snail toxins suggests natural elaboration of different functions on a common fold.
Biochimie | 2008
Tatyana I. Odintsova; Eugene A. Rogozhin; Yurij Baranov; Alexander Kh. Musolyamov; Nasser Yalpani; Tsezi A. Egorov; Eugene V. Grishin
From the annual weed barnyard grass Echinochloa crusgalli (L.) Beauv., two novel defensins Ec-AMP-D1 and Ec-AMP-D2 that differ by a single amino acid substitution were isolated by a combination of different chromatographic procedures. Both defensins were active against several phytopathogenic fungi and the oomycete Phytophthora infestans at micromolar concentrations. The Ec-AMP-D1 showed higher activity against the oomycete than Ec-AMP-D2. The comparison of the amino acid sequences of the antifungal E. crusgalli defensins with those of earlier characterized T. kiharae defensins [T.I. Odintsova, Ts.A. Egorov, A.Kh. Musolyamov, M.S. Odintsova, V.A. Pukhalsky, E.V. Grishin, Seed defensins from T. kiharae and related species: genome localization of defensin-encoding genes, Biochimie, 89 (2007) 605-612.] that were devoid of substantial antifungal activity point to the C-terminal region of the molecule as the main determinant of the antifungal activity of E. crusgalli defensins.
Biochemical Journal | 2012
Peter B. Oparin; Konstantin S. Mineev; Yakov E. Dunaevsky; Alexander S. Arseniev; M. A. Belozersky; Eugene V. Grishin; Tsezi A. Egorov; Alexander A. Vassilevski
A new peptide trypsin inhibitor named BWI-2c was obtained from buckwheat (Fagopyrum esculentum) seeds by sequential affinity, ion exchange and reversed-phase chromatography. The peptide was sequenced and found to contain 41 amino acid residues, with four cysteine residues involved in two intramolecular disulfide bonds. Recombinant BWI-2c identical to the natural peptide was produced in Escherichia coli in a form of a cleavable fusion with thioredoxin. The 3D (three-dimensional) structure of the peptide in solution was determined by NMR spectroscopy, revealing two antiparallel α-helices stapled by disulfide bonds. Together with VhTI, a trypsin inhibitor from veronica (Veronica hederifolia), BWI-2c represents a new family of protease inhibitors with an unusual α-helical hairpin fold. The linker sequence between the helices represents the so-called trypsin inhibitory loop responsible for direct binding to the active site of the enzyme that cleaves BWI-2c at the functionally important residue Arg(19). The inhibition constant was determined for BWI-2c against trypsin (1.7×10(-1)0 M), and the peptide was tested on other enzymes, including those from various insect digestive systems, revealing high selectivity to trypsin-like proteases. Structural similarity shared by BWI-2c, VhTI and several other plant defence peptides leads to the acknowledgement of a new widespread family of plant peptides termed α-hairpinins.
Biochemical and Biophysical Research Communications | 2011
Peter V. Dubovskii; Alexander A. Vassilevski; Anna A. Slavokhotova; Tatyana I. Odintsova; Eugene V. Grishin; Tsezi A. Egorov; Alexander S. Arseniev
Hevein, a well-studied lectin from the rubber tree Hevea brasiliensis, is the title representative of a broad family of chitin-binding polypeptides. WAMP-1a, a peptide isolated from the wheat Triticum kiharae, shares considerable similarity with hevein. The peptide possesses antifungal, antibacterial activity and is thought to play an important role in the defense system of wheat. Importantly, it features a substitution of the conserved serine residue to glycine reducing its carbohydrate-binding capacity. We used NMR spectroscopy to derive the spatial structure of WAMP-1a in aqueous solution. Notably, the mutation was found to strengthen amphiphilicity of the molecule, associated with its mode of action, an indication of the hevein domain multi-functionality. Both primary and tertiary structure of WAMP-1a suggest its evolutionary origin from the hevein domain of plant chitinases.
Methods of Molecular Biology | 2010
Alexander A. Vassilevski; Sergey A. Kozlov; Tsezi A. Egorov; Eugene V. Grishin
Spider venoms represent invaluable sources of biologically active compounds suitable for use in life science research and also having a significant potential for biotechnology and therapeutic applications. The methods reported herewith are based on our long experience of spider venom fractionation and peptides purification. We routinely screen new peptides for antimicrobial and insecticidal activities and our detailed protocols are also reported here. So far these have been tested on species of Central Asian and European spiders from the families Agelenidae, Eresidae, Gnaphosidae, Lycosidae, Miturgidae, Oxyopidae, Philodromidae, Pisauridae, Segestriidae, Theridiidae, Thomisidae, and Zodariidae. The reported protocols should be easily adaptable for use with other arthropod species.
Transgenic Research | 2012
Rahim R. Shukurov; Vera D. Voblikova; Alexandra K. Nikonorova; Roman A. Komakhin; Vera V. Komakhina; Tsezi A. Egorov; Eugene V. Grishin; A. V. Babakov
Two novel antifungal hevein-like peptides, SmAMP1.1a and SmAMP2.2a, were previously isolated from seeds of Stellaria media. It has been established that these peptides accumulate in this weed as a result of proteolysis of two propeptides, pro-SmAMP1 and pro-SmAMP2. The primary structure of these propeptides is unique; in addition to having a signal peptide and negatively charged C-terminus, each of these structures consists of two hevein-like peptides of different length separated by a space rather than a single peptide. In this work, we demonstrated that the expression of the pro-SmAMP1 and pro-SmAMP2 genes was tissue-specific and increased substantially under exposure to fungal infection. To elucidate whether S. media has any advantages in defending against phytopathogens due to its unusual structure of pro-SmAMP1 and pro-SmAMP2, on the basis of the pro-SmAMP1 gene, we created three genetic constructs. Arabidopsis and tobacco plants were subsequently transformed with these constructs. Transgenic plants bearing the full-length pro-SmAMP1 gene exhibited the best resistance to the phytopathogens Bipolaris sorokiniana and Thielaviopsis basicola. The resistance of S. media plants to phytopathogenic fungi was likely due to the fungal-inducible expression of pro-SmAMP1 and pro-SmAMP2 genes, and due to the specific features of the primary structure of the corresponding propeptides. As a result of the processing of these propeptides, two different antimicrobial peptides were released simultaneously. Based on our results, we conclude that the genes for antimicrobial peptides from S. media may be promising genetic tools for the improvement of plant resistance to fungal diseases.