Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tsing-Bau Chen is active.

Publication


Featured researches published by Tsing-Bau Chen.


Life Sciences | 1985

Neuropeptide Y (NPY) binding sites in rat brain labeled with 125I-Bolton-Hunter NPY: Comparative potencies of various polypeptides on brain NPY binding and biological responses in the rat vas deferens

Raymond S.L. Chang; Victor J. Lotti; Tsing-Bau Chen; Deborah J. Cerino; Paul J. Kling

The binding of biologically active 125I-Bolton-Hunter (BH)-NPY to rat brain membranes was saturable and reversible and regulated by inorganic cations and guanyl nucleotides consistent with other neurotransmitter receptor systems. The concentration of specific 125I-NPY binding differed in various brain regions, being highest in the hippocampus and lowest in the cerebellum. Scatchard analysis of 125I-NPY binding showed a single class of receptor sites with a Kd = 0.1 nM and Bmax of 3 pmole/g tissue in hippocampus. Peptide YY, porcine and human NPY inhibited the specific 125I-BH-NPY binding with IC50 values of 50-120 pM. In contrast, human NPY free acid and pancreatic polypeptides from human (HPP), rat (RPP) and avian (APP) sources were much weaker (IC50 greater than or equal to 300 nM). The rank order of potencies for NPY analogs and the inactivity of APP and HPP fragment (31-36) on brain binding appeared to correlate with their relative activities in inhibiting contractions of the field-stimulated rat vas deferens. However, PYY, HPP and RPP exhibited activity in the field-stimulated rat vas deferens indicative of a possible action upon sites distinct from the brain NPY binding site.


Brain Research | 2015

Localization of CGRP, CGRP receptor, PACAP and glutamate in trigeminal ganglion. Relation to the blood-brain barrier.

Sajedeh Eftekhari; Christopher A. Salvatore; Sara Ellinor Johansson; Tsing-Bau Chen; Zhizhen Zeng; Lars Edvinsson

Calcitonin gene-related peptide (CGRP) receptor antagonists have demonstrated anti-migraine efficacy. One remaining question is where do these blockers act? We hypothesized that the trigeminal ganglion could be one possible site. We examined the binding sites of a CGRP receptor antagonist (MK-3207) and related this to the expression of CGRP and its receptor in rhesus trigeminal ganglion. Pituitary adenylate cyclase-activating polypeptide (PACAP) and glutamate were examined and related to the CGRP system. Furthermore, we examined if the trigeminal ganglion is protected by the blood-brain barrier (BBB). Autoradiography was performed with [(3)H]MK-3207 to demonstrate receptor binding sites in rhesus trigeminal ganglion (TG). Immunofluorescence was used to correlate binding and the presence of CGRP and its receptor components, calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1), and the distribution of PACAP and glutamate in rhesus and rat TG. Evans blue was used to examine large molecule penetration into the rat TG. High receptor binding densities were found in rhesus TG. Immunofluorescence revealed expression of CGRP, CLR and RAMP1 in trigeminal cells. CGRP positive neurons expressed PACAP but not glutamate. Some neurons expressing CLR and RAMP1 co-localized with glutamate. Evans blue revealed that the TG is not protected by BBB. This study demonstrates CGRP receptor binding sites and expression of the CGRP receptor in rhesus and rat TG. The expression pattern of PACAP and glutamate suggests a possible interaction between the glutamatergic and CGRP system. In rat the TG is outside the BBB, suggesting that molecules do not need to be CNS-penetrant to block these receptors.


Biochemical and Biophysical Research Communications | 1988

Specific [3H]propionyl-neuropeptide Y (NPY) binding in rabbit aortic membranes: comparisons with binding in rat brain and biological responses in rat vas deferens.

Raymond S.L. Chang; Victor J. Lotti; Tsing-Bau Chen

The binding of biologically active [3H]propionyl-NPY to rabbit aortic membranes was specific and saturable. Scatchard analysis indicated a single class of binding sites with a Kd of 1.1 nM. The rank order of potencies for displacement of [3H]propionyl-NPY binding by NPY analogs in the aorta correlated with their potencies in displacing binding in brain and their activity in inhibiting contractions of the field-stimulated rat vas deferens. However, differences were noted in the absolute or relative potencies of other related polypeptides both in regards to aorta compared to brain NPY binding and NPY binding compared to activity in the vas deferens. Collectively, the results support proposals for heterogeneity of NPY receptors.


ChemMedChem | 2006

Design, Synthesis, and In Vivo Efficacy of Glycine Transporter-1 (GlyT1) Inhibitors Derived from a Series of [4-Phenyl-1-(propylsulfonyl)piperidin-4-yl]methyl Benzamides

Craig W. Lindsley; Zhijian Zhao; William Leister; Julie A. O'Brien; Wei Lemaire; David L. Williams; Tsing-Bau Chen; Raymond S.L. Chang; Maryann Burno; Marlene A. Jacobson; Cyrille Sur; Gene G. Kinney; Douglas J. Pettibone; Philip R. Tiller; Sheri Smith; Nancy N. Tsou; Mark E. Duggan; P. Jeffrey Conn; George D. Hartman

Design, Synthesis, and In Vivo Efficacy of Glycine Transporter-1 (GlyT1) Inhibitors Derived from a Series of [4-Phenyl-1(propylsulfonyl)piperidin-4-yl]methyl Benzamides Craig W. Lindsley,* Zhijian Zhao, William H. Leister, Julie O’Brien, Wei Lemaire, David L. Williams, Jr. , Tsing-Bau Chen, Raymond S. L. Chang, Maryann Burno, Marlene A. Jacobson, Cyrille Sur, Gene G. Kinney, Douglas J. Pettibone, Philip R. Tiller, Sheri Smith, Nancy N. Tsou, Mark E. Duggan, P. Jeffrey Conn, e] and George D. Hartman


The Journal of Comparative Neurology | 2016

Localization of CGRP receptor components and receptor binding sites in rhesus monkey brainstem: A detailed study using in situ hybridization, immunofluorescence, and autoradiography

Sajedeh Eftekhari; Renee C. Gaspar; Rhonda Roberts; Tsing-Bau Chen; Zhizhen Zeng; Stephanie Villarreal; Lars Edvinsson; Christopher A. Salvatore

Functional imaging studies have revealed that certain brainstem areas are activated during migraine attacks. The neuropeptide calcitonin gene–related peptide (CGRP) is associated with activation of the trigeminovascular system and transmission of nociceptive information and plays a key role in migraine pathophysiology. Therefore, to elucidate the role of CGRP, it is critical to identify the regions within the brainstem that process CGRP signaling. In situ hybridization and immunofluorescence were performed to detect mRNA expression and define cellular localization of calcitonin receptor–like receptor (CLR) and receptor activity–modifying protein 1 (RAMP1), respectively. To define CGRP receptor binding sites, in vitro autoradiography was performed with [3H]MK‐3207 (a CGRP receptor antagonist). CLR and RAMP1 mRNA and protein expression were detected in the pineal gland, medial mammillary nucleus, median eminence, infundibular stem, periaqueductal gray, area postrema, pontine raphe nucleus, gracile nucleus, spinal trigeminal nucleus, and spinal cord. RAMP1 mRNA expression was also detected in the posterior hypothalamic area, trochlear nucleus, dorsal raphe nucleus, medial lemniscus, pontine nuclei, vagus nerve, inferior olive, abducens nucleus, and motor trigeminal nucleus; protein coexpression of CLR and RAMP1 was observed in these areas via immunofluorescence. [3H]MK‐3207 showed high binding densities concordant with mRNA and protein expression. The present study suggests that several regions in the brainstem may be involved in CGRP signaling. Interestingly, we found receptor expression and antagonist binding in some areas that are not protected by the blood–brain barrier, which suggests that drugs inhibiting CGRP signaling may not be able to penetrate the central nervous system to antagonize receptors in these brain regions. J. Comp. Neurol. 524:90–118, 2016.


Biological Chemistry | 2001

Molecular cloning and pharmacological characterization of the canine B1 and B2 bradykinin receptors.

J. Fred Hess; Patricia J. Hey; Tsing-Bau Chen; Julie A. O'Brien; Stacey O'Malley; Douglas J. Pettibone; Raymond S. L. Chang

Abstract The dog is a valuable animal model in the study of the physiological role of both the B1 and B2 bradykinin receptors. To more thoroughly characterize the pharmacological properties of the canine kinin receptors we isolated the cDNA sequence encoding the B1 and B2 bradykinin receptor subtypes and overexpressed them in Chinese hamster ovary (CHO) cells. The cDNA sequence of the canine B1 bradykinin receptor encodes a protein comprised of 350 amino acids that is 76% identical to the human B1 bradykinin receptor. The cDNA sequence of the canine B2 bradykinin receptor encodes a protein of 392 amino acids that is 81% identical to the human B2 bradykinin receptor. The amino acid sequence of the canine B1 and B2 receptors are 35% identical. Pharmacological studies of the cloned receptors revealed that the agonist affinity of the dog B1 receptor is similar to the rodent B1 receptors, and differs from the human form in that there is no preference for the presence of the Nterminal Lys residue of [desArg10]Lysbradykinin. Significantly, the B1 receptor antagonist [desArg9,Leu8]BK behaves as partial agonist on the cloned dog B1 receptor. The dog B2 receptor exhibits the classical pharmacological properties of this receptor subtype.


Bioorganic & Medicinal Chemistry Letters | 1994

Potent imidazole angiotensinII antagonists: acyl sulfonamides and acyl sulfamides as tetrazole replacements

Elizabeth M. Naylor; Prasun K. Chakravarty; Colleen A. Costello; Raymond S.L. Chang; Tsing-Bau Chen; Kristie A. Faust; Victor J. Lotti; Salah D. Kivlighn; Gloria J. Zingaro; Peter K.S. Siegl; Pancras C. Wong; David John Carini; Ruth R. Wexler; Arthur A. Patchett; William J. Greenlee

Abstract Acyl sulfonamides and acyl sulfamides were synthesized and their in vitro and in vivo biological properties evaluated. AT1 binding affinities for these potent AII antagonists were similar to their tetrazole analogs. An enhancement in AT2 potencies was observed, particularly with acyl sulfonamides or sulfamides bearing hydrophobic substituents.


European Journal of Pharmacology | 2000

In vitro studies on L-771,688 (SNAP 6383), a new potent and selective α1A-adrenoceptor antagonist

Raymond S.L. Chang; Tsing-Bau Chen; Stacey O'Malley; Douglas J. Pettibone; Jerry DiSalvo; Barbara Francis; Mark G. Bock; Roger M. Freidinger; Dhanapalan Nagarathnam; Shou W. Miao; Quanrong Shen; Bharat Lagu; T. G. Murali Dhar; Sriram Tyagarajan; Mohammad R. Marzabadi; Wai C. Wong; Charles Gluchowski; Carlos Forray

L-771,688 (SNAP 6383, methyl(4S)-4-(3, 4-difluorophenyl)-6-[(methyloxy)methyl]-2-oxo-3-[(¿3-[4-(2-pyridin yl)-1-piperidinyl]propyl¿amino)carbonyl]-1,2,3, 4-tetrahydro-5-pyrimidine carboxylate) had high affinity (Ki less than or = 1 nM) for [3H]prazosin binding to cloned human, rat and dog alpha1A-adrenoceptors and high selectivity (>500-fold) over alpha1B and alpha1D-adrenoceptors. [3H]Prazosin / (+/-)-beta-[125I]-4-hydroxy-phenyl)-ethyl-aminomethylteralone ([125I]HEAT) binding studies in human and animal tissues known to contain alpha1A and non-alpha1A-adrenoceptors further demonstrated the potency and alpha1A-subtype selectivity of L-771,688. [3H]L-771,688 binding studies at the cloned human alpha1A-adrenoceptors and in rat tissues indicated that specific [3H]L-771,688 binding was saturable and of high affinity (Kd=43-90 pM) and represented binding to the pharmacologically relevant alpha1A-adrenoceptors. L-771,688 antagonized norepinephrine-induced inositol-phosphate responses in cloned human alpha1A-adrenoceptors, as well as phenylephrine or A-61603 (N-[5-4,5-dihydro-1H-imidazol-2yl)-2-hydroxy-5,6,7, 8-terahydro-naphthlen-1-yl] methanesulfonamide hydrobromide) induced contraction in isolated rat, dog and human prostate, human and monkey bladder neck and rat caudal artery with apparent Kb values of 0.02-0.28 nM. In contrast, the contraction of rat aorta induced by norepinephrine was resistant to L-771,688. These data indicate that L-771,688 is a highly selective alpha1A-adrenoceptor antagonist.


Bioorganic & Medicinal Chemistry Letters | 1994

A new class of balanced AT1/AT2 angiotensin II antagonists: quinazolinone AII antagonists with acylsulfonamide and sulfonylcarbamate acidic functionalities

Tomasz W. Glinka; Stephen E. de Laszlo; Peter K.S. Siegl; Raymond S.L. Chang; Salah D. Kivlighn; Terry S. Schorn; Kristie A. Faust; Tsing-Bau Chen; Gloria J. Zingaro; Victor J. Lotti; William J. Greenlee

Abstract The structure activity relationships of a series of 2-alkyl-6-(acylamino)-3-[((2′-acylaminosulfonyl)biphenyl-4-yl)methyl]quinazolin-4-(3H)-ones were studied in order to identify balanced angiotensin II antagonists capable of potent binding to both AT 1 and AT 2 angiotensin receptor subtypes. The optimization of the substitution pattern led to the discovery of a potent, balanced quinazolinone antagonist L-162,393 , which displayed long lasting blockade of angiotensin pressor response in rats, dogs and rhesus monkeys.


Neuroscience Letters | 1986

Increased neuropeptide Y (NPY) receptor binding in hippocampus and cortex of spontaneous hypertensive (SH) rats compared to normotensive (WKY) rats

Raymond S.L. Chang; Victor J. Lotti; Tsing-Bau Chen

Specific 125I-NPY binding in various brain regions of spontaneous hypertensive (SH) rats and age-matched normotensive (WKY) rats was compared. SH rats exhibited significantly greater 125I-NPY binding than WKY rats in the hippocampus (43%) and cortex (18%), but not hypothalamus, midbrain, striatum or pons-medulla. Scatchard analysis indicated that the increased 125I-NPY binding in the hippocampus of SH rats represents a greater number of NPY binding sites.

Collaboration


Dive into the Tsing-Bau Chen's collaboration.

Top Co-Authors

Avatar

Raymond S.L. Chang

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Victor J. Lotti

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Gloria J. Zingaro

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Salah D. Kivlighn

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Stacey O'Malley

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Peter K.S. Siegl

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Douglas J. Pettibone

United States Military Academy

View shared research outputs
Researchain Logo
Decentralizing Knowledge