Tsubasa Tanaka
Kumamoto University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tsubasa Tanaka.
Development | 2008
Tsubasa Tanaka; Akira Nakamura
Cell fate is often determined by the intracellular localization of RNAs and proteins. In Drosophila oocytes, oskar (osk) RNA localization and the subsequent Osk synthesis at the posterior pole direct the assembly of the pole plasm, where factors for the germline and abdomen formation accumulate. osk RNA produces two isoforms, long and short Osk, which have distinct functions in pole plasm assembly. Short Osk recruits downstream components of the pole plasm, whose anchoring to the posterior cortex requires long Osk. The anchoring of pole plasm components also requires actin cytoskeleton, and Osk promotes long F-actin projections in the oocyte posterior cytoplasm. However, the mechanism by which Osk mediates F-actin reorganization remains elusive. Furthermore, although long Osk is known to associate with endosomes under immuno-electron microscopy, it was not known whether this association is functionally significant. Here we show that Rabenosyn-5 (Rbsn-5), a Rab5 effector protein required for the early endocytic pathway, is crucial for pole plasm assembly. rbsn-5- oocytes fail to maintain microtubule polarity, which secondarily disrupts osk RNA localization. Nevertheless, anteriorly misexpressed Osk, particularly long Osk, recruits endosomal proteins, including Rbsn-5, and stimulates endocytosis. In oocytes lacking rbsn-5, the ectopic Osk induces aberrant F-actin aggregates, which diffuse into the cytoplasm along with pole plasm components. We propose that Osk stimulates endosomal cycling, which in turn promotes F-actin reorganization to anchor the pole plasm components to the oocyte cortex.
Development | 2011
Kalpana Makhijani; Brandy Alexander; Tsubasa Tanaka; Eric Rulifson; Katja Brückner
Interactions of hematopoietic cells with their microenvironment control blood cell colonization, homing and hematopoiesis. Here, we introduce larval hematopoiesis as the first Drosophila model for hematopoietic colonization and the role of the peripheral nervous system (PNS) as a microenvironment in hematopoiesis. The Drosophila larval hematopoietic system is founded by differentiated hemocytes of the embryo, which colonize segmentally repeated epidermal-muscular pockets and proliferate in these locations. Importantly, we show that these resident hemocytes tightly colocalize with peripheral neurons and we demonstrate that larval hemocytes depend on the PNS as an attractive and trophic microenvironment. atonal (ato) mutant or genetically ablated larvae, which are deficient for subsets of peripheral neurons, show a progressive apoptotic decline in hemocytes and an incomplete resident hemocyte pattern, whereas supernumerary peripheral neurons induced by ectopic expression of the proneural gene scute (sc) misdirect hemocytes to these ectopic locations. This PNS-hematopoietic connection in Drosophila parallels the emerging role of the PNS in hematopoiesis and immune functions in vertebrates, and provides the basis for the systematic genetic dissection of the PNS-hematopoietic axis in the future.
Molecular Biology of the Cell | 2014
Zsuzsanna Szatmári; Viktor Kis; Mónika Lippai; Krisztina Hegedűs; Tamás Faragó; Péter Lőrincz; Tsubasa Tanaka; Gábor Juhász; Miklós Sass
During autophagy, double-membrane autophagosomes deliver sequestered cytoplasmic content to late endosomes and lysosomes for degradation. The molecular mechanism of autophagosome maturation is still poorly characterized. The small GTPase Rab11 regulates endosomal traffic and is thought to function at the level of recycling endosomes. We show that loss of Rab11 leads to accumulation of autophagosomes and late endosomes in Drosophila melanogaster. Rab11 translocates from recycling endosomes to autophagosomes in response to autophagy induction and physically interacts with Hook, a negative regulator of endosome maturation. Hook anchors endosomes to microtubules, and we show that Rab11 facilitates the fusion of endosomes and autophagosomes by removing Hook from mature late endosomes and inhibiting its homodimerization. Thus induction of autophagy appears to promote autophagic flux by increased convergence with the endosomal pathway.
Genes to Cells | 2011
Kenta Yamada; Takashi J. Fuwa; Tomonori Ayukawa; Tsubasa Tanaka; Akira Nakamura; Marian B. Wilkin; Martin Baron; Kenji Matsuno
Cell signaling mediated by the Notch receptor (N) regulates many cell‐fate decisions and is partly controlled by the endocytic trafficking of N. Drosophila deltex (dx) encodes an evolutionarily conserved regulator of N signaling, an E3‐ubiquitin ligase, which ubiquitinates N’s intracellular domain. Although Dx was shown to function in N endocytosis in studies of dx over‐expression, the roles of endogenous Dx have remained hidden. Here, we investigated N endocytosis in a dx‐null Drosophila mutant and found that endogenous Dx is required for at least two steps of N trafficking: the incorporation of N into endocytic vesicles from the plasma membrane and the transport of N from early endosomes to lysosomes. In the absence of Dx functions, N was stabilized in unknown endocytic compartments, where it was probably insulated from transport to lysosomes. We also found that canonical N signaling and Dx‐mediated N signaling are activated in two different endocytic compartments, before N is incorporated into multivesicular body (MVB) interluminal vesicles and after N is transported from MVBs, respectively. The endocytic compartment in which Dx‐mediated N signaling is activated appears to coincide with the activity of endogenous Dx in N trafficking. These findings extend our understanding of how N’s trafficking and activation are correlated.
Development | 2011
Tsubasa Tanaka; Yasuko Kato; Kazuki Matsuda; Kazuko Hanyu-Nakamura; Akira Nakamura
Drosophila pole (germ) plasm contains germline and abdominal determinants. Its assembly begins with the localization and translation of oskar (osk) RNA at the oocyte posterior, to which the pole plasm must be restricted for proper embryonic development. Osk stimulates endocytosis, which in turn promotes actin remodeling to form long F-actin projections at the oocyte posterior pole. Although the endocytosis-coupled actin remodeling appears to be crucial for the pole plasm anchoring, the mechanism linking Osk-induced endocytic activity and actin remodeling is unknown. Here, we report that a Golgi-endosomal protein, Mon2, acts downstream of Osk to remodel cortical actin and to anchor the pole plasm. Mon2 interacts with two actin nucleators known to be involved in osk RNA localization in the oocyte, Cappuccino (Capu) and Spire (Spir), and promotes the accumulation of the small GTPase Rho1 at the oocyte posterior. We also found that these actin regulators are required for Osk-dependent formation of long F-actin projections and cortical anchoring of pole plasm components. We propose that, in response to the Osk-mediated endocytic activation, vesicle-localized Mon2 acts as a scaffold that instructs the actin-remodeling complex to form long F-actin projections. This Mon2-mediated coupling event is crucial to restrict the pole plasm to the oocyte posterior cortex.
PLOS ONE | 2009
Masato S. Abe; Yuka Setoguchi; Tsubasa Tanaka; Wakae Awano; Kuniaki Takahashi; Ryu Ueda; Akira Nakamura; Satoshi Goto
The class III phosphatidylinositol-3 kinase (PI3K (III)) regulates intracellular vesicular transport at multiple steps through the production of phosphatidylinositol-3-phosphate (PI(3)P). While the localization of proteins at distinct membrane domains are likely regulated in different ways, the roles of PI3K (III) and its effectors have not been extensively investigated in a polarized cell during tissue development. In this study, we examined in vivo functions of PI3K (III) and its effector candidate Rabenosyn-5 (Rbsn-5) in Drosophila wing primordial cells, which are polarized along the apical-basal axis. Knockdown of the PI3K (III) subunit Vps15 resulted in an accumulation of the apical junctional proteins DE-cadherin and Flamingo and also the basal membrane protein β-integrin in intracellular vesicles. By contrast, knockdown of PI3K (III) increased lateral membrane-localized Fasciclin III (Fas III). Importantly, loss-of-function mutation of Rbsn-5 recapitulated the aberrant localization phenotypes of β-integrin and Fas III, but not those of DE-cadherin and Flamingo. These results suggest that PI3K (III) differentially regulates localization of proteins at distinct membrane domains and that Rbsn-5 mediates only a part of the PI3K (III)-dependent processes.
BioArchitecture | 2011
Tsubasa Tanaka; Akira Nakamura
In many animals, germ-cell fate is specified by inheritance of the germ plasm, which is enriched in maternal RNAs and proteins. Assembly of the Drosophila germ (pole) plasm begins with the localization and translation of oskar (osk) RNA at the oocyte posterior pole. osk RNA produces two isoforms, long and short Osk. Short Osk recruits other pole plasm components, and long Osk restricts them to the oocyte cortex. Although molecular functions of long Osk remain mysterious, it is known to be involved in endocytic activation and actin cytoskeletal remodeling. We identified several vesicular trafficking machinery components that act downstream of long Osk in pole plasm assembly. These included the Rab5 effector protein Rabenosyn-5 (Rbsn-5) and the Golgi/endosomal protein Mon2, both of which were crucial for Osk-induced actin remodeling and the anchoring of pole plasm components. We propose that, in response to long Osk, the Rab5/Rbsn-5-dependent endocytic pathway promotes the formation of specialized vesicles, and Mon2 acts on these vesicles as a scaffold to instruct actin nucleators like Cappuccino and Spire to remodel the actin cytoskeleton, which anchors pole plasm components to the cortex. This mechanism may be applicable to the asymmetric localization of macromolecular structures such as protein-RNA complexes in other systems.
Genetics | 2015
Guojun Liu; Paulomi Sanghavi; Kathryn E. Bollinger; Libby Perry; Brendan Marshall; Penny Roon; Tsubasa Tanaka; Akira Nakamura; Graydon B. Gonsalvez
Dynactin is a multi-subunit complex that functions as a regulator of the Dynein motor. A central component of this complex is Dynamitin/p50 (Dmn). Dmn is required for endosome motility in mammalian cell lines. However, the extent to which Dmn participates in the sorting of cargo via the endosomal system is unknown. In this study, we examined the endocytic role of Dmn using the Drosophila melanogaster oocyte as a model. Yolk proteins are internalized into the oocyte via clathrin-mediated endocytosis, trafficked through the endocytic pathway, and stored in condensed yolk granules. Oocytes that were depleted of Dmn contained fewer yolk granules than controls. In addition, these oocytes accumulated numerous endocytic intermediate structures. Particularly prominent were enlarged endosomes that were relatively devoid of Yolk proteins. Ultrastructural and genetic analyses indicate that the endocytic intermediates are produced downstream of Rab5. Similar phenotypes were observed upon depleting Dynein heavy chain (Dhc) or Lis1. Dhc is the motor subunit of the Dynein complex and Lis1 is a regulator of Dynein activity. We therefore propose that Dmn performs its function in endocytosis via the Dynein motor. Consistent with a role for Dynein in endocytosis, the motor colocalized with the endocytic machinery at the oocyte cortex in an endocytosis-dependent manner. Our results suggest a model whereby endocytic activity recruits Dynein to the oocyte cortex. The motor along with its regulators, Dynactin and Lis1, functions to ensure efficient endocytic uptake and maturation.
Development | 2014
Yi Cheng Tsai; Wei Chiang; Willisa Liou; Wei Hao Lee; Yu-Wei Chang; Pei Yu Wang; Yi Chen Li; Tsubasa Tanaka; Akira Nakamura; Li Mei Pai
The nutritional environment is crucial for Drosophila oogenesis in terms of controlling hormonal conditions that regulate yolk production and the progress of vitellogenesis. Here, we discovered that Drosophila Endophilin B (D-EndoB), a member of the endophilin family, is required for yolk endocytosis as it regulates membrane dynamics in developing egg chambers. Loss of D-EndoB leads to yolk content reduction, similar to that seen in yolkless mutants, and also causes poor fecundity. In addition, mutant egg chambers exhibit an arrest at the previtellogenic stage. D-EndoB displayed a crescent localization at the oocyte posterior pole in an Oskar-dependent manner; however, it did not contribute to pole plasm assembly. D-EndoB was found to partially colocalize with Long Oskar and Yolkless at the endocytic membranes in ultrastructure analysis. Using an FM4-64 dye incorporation assay, D-EndoB was also found to promote endocytosis in the oocyte. When expressing the full-length D-endoBFL or D-endoBΔSH3 mutant transgenes in oocytes, the blockage of vitellogenesis and the defect in fecundity in D-endoB mutants was restored. By contrast, a truncated N-BAR domain of the D-EndoB only partially rescued these defects. Taken together, these results allow us to conclude that D-EndoB contributes to the endocytic activity downstream of Oskar by facilitating membrane dynamics through its N-BAR domain in the yolk uptake process, thereby leading to normal progression of vitellogenesis.
EMBO Reports | 2018
Koji Kikuchi; Akira Nakamura; Masaki Arata; Dongbo Shi; Mami Nakagawa; Tsubasa Tanaka; Tadashi Uemura; Toshihiko Fujimori; Akira Kikuchi; Akiyoshi Uezu; Yasuhisa Sakamoto; Hiroyuki Nakanishi
The Wnt signaling pathway can be grouped into two classes, the β‐catenin‐dependent and β‐catenin‐independent pathways. Wnt5a signaling through a β‐catenin‐independent pathway promotes microtubule (MT) remodeling during cell‐substrate adhesion, cell migration, and planar cell polarity formation. Although Wnt5a signaling and MT remodeling are known to form an interdependent regulatory loop, the underlying mechanism remains unknown. Here we show that in HeLa cells, the paralogous MT‐associated proteins Map7 and Map7D1 (Map7/7D1) form an interdependent regulatory loop with Disheveled, the critical signal transducer in Wnt signaling. Map7/7D1 bind to Disheveled, direct its cortical localization, and facilitate the cortical targeting of MT plus‐ends in response to Wnt5a signaling. Wnt5a signaling also promotes Map7/7D1 movement toward MT plus‐ends, and depletion of the Kinesin‐1 member Kif5b abolishes the Map7/7D1 dynamics and Disheveled localization. Furthermore, Disheveled stabilizes Map7/7D1. Intriguingly, Map7/7D1 and its Drosophila ortholog, Ensconsin show planar‐polarized distribution in both mouse and fly epithelia, and Ensconsin influences proper localization of Drosophila Disheveled in pupal wing cells. These results suggest that the role of Map7/7D1/Ensconsin in Disheveled localization is evolutionarily conserved.