Tsuguhito Ota
Kanazawa University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tsuguhito Ota.
Hepatology | 2007
Naoto Matsuzawa; Toshinari Takamura; Seiichiro Kurita; Hirofumi Misu; Tsuguhito Ota; Hitoshi Ando; Masayoshi Yokoyama; Masao Honda; Yoh Zen; Yasuni Nakanuma; Ken-ichi Miyamoto; Shuichi Kaneko
Recently, nonalcoholic steatohepatitis (NASH) was found to be correlated with cardiovascular disease events independently of the metabolic syndrome. The aim of this study was to investigate whether an atherogenic (Ath) diet induces the pathology of steatohepatitis necessary for the diagnosis of human NASH and how cholesterol and triglyceride alter the hepatic gene expression profiles responsible for oxidative stress. We investigated the liver pathology and plasma and hepatic lipids of mice fed the Ath diet. The hepatic gene expression profile was examined with microarrays and real‐time polymerase chain reactions. The Ath diet induced dyslipidemia, lipid peroxidation, and stellate cell activation in the liver and finally caused precirrhotic steatohepatitis after 24 weeks. Cellular ballooning, a necessary histological feature defining human NASH, was observed in contrast to existing animal models. The addition of a high‐fat component to the Ath diet caused hepatic insulin resistance and further accelerated the pathology of steatohepatitis. A global gene expression analysis revealed that the Ath diet up‐regulated the hepatic expression levels of genes for fatty acid synthesis, oxidative stress, inflammation, and fibrogenesis, which were further accelerated by the addition of a high‐fat component. Conversely, the high‐fat component down‐regulated the hepatic gene expression of antioxidant enzymes and might have increased oxidative stress. Conclusion: The Ath diet induces oxidative stress and steatohepatitis with cellular ballooning. The high‐fat component induces insulin resistance, down‐regulates genes for antioxidant enzymes, and further aggravates the steatohepatitis. This model suggests the critical role of lipids in causing oxidative stress and insulin resistance leading to steatohepatitis. (HEPATOLOGY 2007.)
Metabolism-clinical and Experimental | 2008
Naoto Matsuzawa-Nagata; Toshinari Takamura; Hitoshi Ando; Seiji Nakamura; Seiichiro Kurita; Hirofumi Misu; Tsuguhito Ota; Masayoshi Yokoyama; Masao Honda; Ken-ichi Miyamoto; Shuichi Kaneko
Insulin resistance is a key pathophysiological feature of metabolic syndrome. However, the initial events triggering the development of insulin resistance and its causal relations with dysregulation of glucose and fatty acids metabolism remain unclear. We investigated biological pathways that have the potential to induce insulin resistance in mice fed a high-fat diet (HFD). We demonstrate that the pathways for reactive oxygen species (ROS) production and oxidative stress are coordinately up-regulated in both the liver and adipose tissue of mice fed an HFD before the onset of insulin resistance through discrete mechanism. In the liver, an HFD up-regulated genes involved in sterol regulatory element binding protein 1c-related fatty acid synthesis and peroxisome proliferator-activated receptor alpha-related fatty acid oxidation. In the adipose tissue, however, the HFD down-regulated genes involved in fatty acid synthesis and up-regulated nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex. Furthermore, increased ROS production preceded the elevation of tumor necrosis factor-alpha and free fatty acids in the plasma and liver. The ROS may be an initial key event triggering HFD-induced insulin resistance.
Journal of Biological Chemistry | 2009
Seiji Nakamura; Toshinari Takamura; Naoto Matsuzawa-Nagata; Hiroaki Takayama; Hirofumi Misu; Hiroyo Noda; Satoko Nabemoto; Seiichiro Kurita; Tsuguhito Ota; Hitoshi Ando; Ken-ichi Miyamoto; Shuichi Kaneko
Visceral adiposity in obesity causes excessive free fatty acid (FFA) flux into the liver via the portal vein and may cause fatty liver disease and hepatic insulin resistance. However, because animal models of insulin resistance induced by lipid infusion or a high fat diet are complex and may be accompanied by alterations not restricted to the liver, it is difficult to determine the contribution of FFAs to hepatic insulin resistance. Therefore, we treated H4IIEC3 cells, a rat hepatocyte cell line, with a monounsaturated fatty acid (oleate) and a saturated fatty acid (palmitate) to investigate the direct and initial effects of FFAs on hepatocytes. We show that palmitate, but not oleate, inhibited insulin-stimulated tyrosine phosphorylation of insulin receptor substrate 2 and serine phosphorylation of Akt, through c-Jun NH2-terminal kinase (JNK) activation. Among the well established stimuli for JNK activation, reactive oxygen species (ROS) played a causal role in palmitate-induced JNK activation. In addition, etomoxir, an inhibitor of carnitine palmitoyltransferase-1, which is the rate-limiting enzyme in mitochondrial fatty acid β-oxidation, as well as inhibitors of the mitochondrial respiratory chain complex (thenoyltrifluoroacetone and carbonyl cyanide m-chlorophenylhydrazone) decreased palmitate-induced ROS production. Together, our findings in hepatocytes indicate that palmitate inhibited insulin signal transduction through JNK activation and that accelerated β-oxidation of palmitate caused excess electron flux in the mitochondrial respiratory chain, resulting in increased ROS generation. Thus, mitochondria-derived ROS induced by palmitate may be major contributors to JNK activation and cellular insulin resistance.
Cell Metabolism | 2010
Hirofumi Misu; Toshinari Takamura; Hiroaki Takayama; Hiroto Hayashi; Naoto Matsuzawa-Nagata; Seiichiro Kurita; Kazuhide Ishikura; Hitoshi Ando; Yumie Takeshita; Tsuguhito Ota; Masaru Sakurai; Tatsuya Yamashita; Eishiro Mizukoshi; Taro Yamashita; Masao Honda; Ken-ichi Miyamoto; Tetsuya Kubota; Naoto Kubota; Takashi Kadowaki; Han-Jong Kim; In-Kyu Lee; Yasuhiko Minokoshi; Yoshiro Saito; Kazuhiko Takahashi; Yoshihiro Yamada; Nobuyuki Takakura; Shuichi Kaneko
The liver may regulate glucose homeostasis by modulating the sensitivity/resistance of peripheral tissues to insulin, by way of the production of secretory proteins, termed hepatokines. Here, we demonstrate that selenoprotein P (SeP), a liver-derived secretory protein, causes insulin resistance. Using serial analysis of gene expression (SAGE) and DNA chip methods, we found that hepatic SeP mRNA levels correlated with insulin resistance in humans. Administration of purified SeP impaired insulin signaling and dysregulated glucose metabolism in both hepatocytes and myocytes. Conversely, both genetic deletion and RNA interference-mediated knockdown of SeP improved systemic insulin sensitivity and glucose tolerance in mice. The metabolic actions of SeP were mediated, at least partly, by inactivation of adenosine monophosphate-activated protein kinase (AMPK). In summary, these results demonstrate a role of SeP in the regulation of glucose metabolism and insulin sensitivity and suggest that SeP may be a therapeutic target for type 2 diabetes.
Diabetes | 2012
Hironori Kitade; Kazuki Sawamoto; Mayumi Nagashimada; Hiroshi Inoue; Yasuhiko Yamamoto; Yoshimichi Sai; Toshinari Takamura; Hiroshi Yamamoto; Ken-ichi Miyamoto; Henry N. Ginsberg; Naofumi Mukaida; Shuichi Kaneko; Tsuguhito Ota
C-C motif chemokine receptor (CCR)2 and its ligand, monocyte chemoattractant protein (MCP)-1, are pivotal for adipose tissue macrophage (ATM) recruitment and the development of insulin resistance. However, other chemokine systems also may play a role in these processes. In this study, we investigated the role of CCR5 in obesity-induced adipose tissue inflammation and insulin resistance. We analyzed expression levels of CCR5 and its ligands in white adipose tissue (WAT) of genetically (ob/ob) and high-fat (HF) diet–induced obese (DIO) mice. Furthermore, we examined the metabolic phenotype of Ccr5−/− mice. CCR5 and its ligands were markedly upregulated in WAT of DIO and ob/ob mice. Fluorescence-activated cell sorter analysis also revealed that DIO mice had a robust increase in CCR5+ cells within ATMs compared with chow-fed mice. Furthermore, Ccr5−/− mice were protected from insulin resistance, glucose intolerance, and hepatic steatosis induced by HF feeding. The effects of loss of CCR5 were related to both reduction of total ATM content and an M2-dominant shift in ATM polarization. It is noteworthy that transplantation of Ccr5−/− bone marrow was sufficient to protect against impaired glucose tolerance. CCR5 plays a critical role in ATM recruitment and polarization and subsequent development of insulin resistance.
Hypertension Research | 2006
Masaru Sakurai; Katsuyuki Miura; Toshinari Takamura; Tsuguhito Ota; Masao Ishizaki; Yuko Morikawa; Teruhiko Kido; Yuchi Naruse; Hideaki Nakagawa
To investigate which of four anthropometric variables of obesity has the strongest association with blood pressure (BP), and to investigate whether there are gender differences in these relationships in Asian adults, we evaluated the associations of four anthropometric variables, body mass index (BMI), waist circumference, waist-to-hip ratio and waist-to-height ratio, with BP and the prevalence of hypertension in a cross-sectional study. A total of 4,557 employees of a metal-products factory in Toyama, Japan (2,935 men and 1,622 women, aged 35 to 59 years) were included in the study. Waist circumference in men and BMI in women had the strongest associations with BP. As for the age-adjusted rate ratio (RR) of the prevalence of hypertension for one standard deviation increase in each anthropometric variable, RR was the highest for waist circumference in men (RR, 1.44; 95% confidence interval [CI], 1.31–1.58), and for BMI in women (RR, 1.61; 95% CI, 1.38–1.88). The associations of waist circumference in men and BMI in women remained significant after adjustment for each of the other variables. The associations of waist-to-height ratio with BP and the prevalence of hypertension were a little weaker than those of waist circumference for both men and women. In conclusion, among four anthropometric variables of obesity—i.e., BMI, waist circumference, waist-to-hip ratio, and waist-to-height ratio—waist circumference had the strongest association with BP and the prevalence of hypertension in men and BMI had the strongest association with BP and hypertension in women. Waist circumference in men and BMI in women should be given more importance in the screening of and guidelines on hypertension in Asians.
Obesity | 2008
Toshinari Takamura; Hirofumi Misu; Naoto Matsuzawa-Nagata; Masaru Sakurai; Tsuguhito Ota; Akiko Shimizu; Seiichiro Kurita; Yumie Takeshita; Hitoshi Ando; Masao Honda; Shuichi Kaneko
Obesity is a major cause of insulin resistance and contributes to the development of type 2 diabetes. The altered expression of genes involved in mitochondrial oxidative phosphorylation (OXPHOS) has been regarded as a key change in insulin‐sensitive organs of patients with type 2 diabetes. This study explores possible molecular signatures of obesity and examines the clinical significance of OXPHOS gene expression in the livers of patients with type 2 diabetes. We analyzed gene expression in the livers of 21 patients with type 2 diabetes (10 obese and 11 nonobese patients; age, 53.0 ± 2.1 years; BMI, 24.4 ± 0.9 kg/m2; fasting plasma glucose, 143.0 ± 10.6 mg/dl) using a DNA chip. We screened 535 human pathways and extracted those metabolic pathways significantly altered by obesity. Genes involved in the OXPHOS pathway, together with glucose and lipid metabolism pathways, were coordinately upregulated in the liver in association with obesity. The mean centroid of OXPHOS gene expression was significantly correlated with insulin resistance indices and the hepatic expression of genes involved in gluconeogenesis, reactive oxygen species (ROS) generation, and transcriptional factors and nuclear co‐activators associated with energy homeostasis. In conclusion, obesity may affect the pathophysiology of type 2 diabetes by upregulating genes involved in OXPHOS in association with insulin resistance markers and the expression of genes involved in hepatic gluconeogenesis and ROS generation.
Diabetologia | 2007
Hirofumi Misu; Toshinari Takamura; Naoto Matsuzawa; Akiko Shimizu; Tsuguhito Ota; Masaru Sakurai; Hitoshi Ando; Kuniaki Arai; Tatsuya Yamashita; Masao Honda; Shuichi Kaneko
Aims/hypothesisMitochondrial oxidative phosphorylation (OXPHOS) plays an important role in the pathophysiology of type 2 diabetes. Genes involved in OXPHOS have been reported to be down-regulated in skeletal muscle from patients with type 2 diabetes; however, hepatic regulation is unknown.Materials and methodsWe analysed expression of genes involved in OXPHOS from the livers of 14 patients with type 2 diabetes and 14 subjects with NGT using serial analysis of gene expression (SAGE) and DNA chip analysis. We evaluated the correlation between expression levels of genes involved in OXPHOS and the clinical parameters of individuals with type 2 diabetes and NGT.ResultsBoth gene analyses showed that genes involved in OXPHOS were significantly upregulated in the type 2 diabetic liver. In the SAGE analysis, tag count comparisons of mitochondrial transcripts showed that ribosomal RNAs (rRNA) were 3.5-fold over-expressed, and mRNAs were 1.2-fold over-expressed in the type 2 diabetes library. DNA chip analysis revealed that expression of genes involved in OXPHOS, which correlated with several nuclear factors, including estrogen-related receptor-α or peroxisome proliferator-activated receptor-γ, was a predictor of fasting plasma glucose levels, independently of age, BMI, insulin resistance and fasting insulin levels (p = 0.04). Surprisingly, genes involved in OXPHOS did not correlate with peroxisome proliferator-activated receptor-γ coactivator-1α or nuclear respiratory factor 1.Conclusions/interpretationOur results indicate that upregulation of genes involved in OXPHOS in the liver, which are regulated by different mechanisms from genes in the skeletal muscle, is associated with fasting hyperglycaemia in patients with type 2 diabetes.
Diabetes & Metabolism Journal | 2013
Tsuguhito Ota
Obesity is a state of chronic low-grade systemic inflammation. This chronic inflammation is deeply involved in insulin resistance, which is the underlying condition of type 2 diabetes and metabolic syndrome. A significant advance in our understanding of obesity-associated inflammation and insulin resistance has been recognition of the critical role of adipose tissue macrophages (ATMs). Chemokines are small proteins that direct the trafficking of immune cells to sites of inflammation. In addition, chemokines activate the production and secretion of inflammatory cytokines through specific G protein-coupled receptors. ATM accumulation through C-C motif chemokine receptor 2 and its ligand monocyte chemoattractant protein-1 is considered pivotal in the development of insulin resistance. However, chemokine systems appear to exhibit a high degree of functional redundancy. Currently, more than 50 chemokines and 18 chemokine receptors exhibiting various physiological and pathological properties have been discovered. Therefore, additional, unidentified chemokine/chemokine receptor pathways that may play significant roles in ATM recruitment and insulin sensitivity remain to be fully identified. This review focuses on some of the latest findings on chemokine systems linking obesity to inflammation and subsequent development of insulin resistance.
PLOS ONE | 2012
Yuki Kita; Toshinari Takamura; Hirofumi Misu; Tsuguhito Ota; Seiichiro Kurita; Yumie Takeshita; Masafumi Uno; Naoto Matsuzawa-Nagata; Ken-ichiro Kato; Hitoshi Ando; Akio Fujimura; Koji Hayashi; Toru Kimura; Yinhua Ni; Toshiki Otoda; Ken-ichi Miyamoto; Yoh Zen; Yasuni Nakanuma; Shuichi Kaneko
Background Optimal treatment for nonalcoholic steatohepatitis (NASH) has not yet been established, particularly for individuals without diabetes. We examined the effects of metformin, commonly used to treat patients with type 2 diabetes, on liver pathology in a non-diabetic NASH mouse model. Methodology/Principal Findings Eight-week-old C57BL/6 mice were fed a methionine- and choline-deficient plus high fat (MCD+HF) diet with or without 0.1% metformin for 8 weeks. Co-administration of metformin significantly decreased fasting plasma glucose levels, but did not affect glucose tolerance or peripheral insulin sensitivity. Metformin ameliorated MCD+HF diet-induced hepatic steatosis, inflammation, and fibrosis. Furthermore, metformin significantly reversed hepatic steatosis and inflammation when administered after the development of experimental NASH. Conclusions/Significance These histological changes were accompanied by reduced hepatic triglyceride content, suppressed hepatic stellate cell activation, and the downregulation of genes involved in fatty acid metabolism, inflammation, and fibrogenesis. Metformin prevented and reversed steatosis and inflammation of NASH in an experimental non-diabetic model without affecting peripheral insulin resistance.