Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tsute Chen is active.

Publication


Featured researches published by Tsute Chen.


Database | 2010

The Human Oral Microbiome Database: a web accessible resource for investigating oral microbe taxonomic and genomic information

Tsute Chen; Wen-Han Yu; Jacques Izard; Oxana V. Baranova; Abirami Lakshmanan; Floyd E. Dewhirst

The human oral microbiome is the most studied human microflora, but 53% of the species have not yet been validly named and 35% remain uncultivated. The uncultivated taxa are known primarily from 16S rRNA sequence information. Sequence information tied solely to obscure isolate or clone numbers, and usually lacking accurate phylogenetic placement, is a major impediment to working with human oral microbiome data. The goal of creating the Human Oral Microbiome Database (HOMD) is to provide the scientific community with a body site-specific comprehensive database for the more than 600 prokaryote species that are present in the human oral cavity based on a curated 16S rRNA gene-based provisional naming scheme. Currently, two primary types of information are provided in HOMD—taxonomic and genomic. Named oral species and taxa identified from 16S rRNA gene sequence analysis of oral isolates and cloning studies were placed into defined 16S rRNA phylotypes and each given unique Human Oral Taxon (HOT) number. The HOT interlinks phenotypic, phylogenetic, genomic, clinical and bibliographic information for each taxon. A BLAST search tool is provided to match user 16S rRNA gene sequences to a curated, full length, 16S rRNA gene reference data set. For genomic analysis, HOMD provides comprehensive set of analysis tools and maintains frequently updated annotations for all the human oral microbial genomes that have been sequenced and publicly released. Oral bacterial genome sequences, determined as part of the Human Microbiome Project, are being added to the HOMD as they become available. We provide HOMD as a conceptual model for the presentation of microbiome data for other human body sites. Database URL: http://www.homd.org


Infection and Immunity | 2001

Porphyromonas gingivalis gingipains and adhesion to epithelial cells.

Tsute Chen; Koji Nakayama; Lynn Belliveau; Margaret J. Duncan

ABSTRACT Porphyromonas gingivalis is one of the principal organisms associated with adult periodontitis. Bacterial surface proteins such as fimbriae and gingipain hemagglutinin domains have been implicated as adhesins that actuate colonization of epithelium lining the gingival sulcus. We investigated the genetics of P. gingivalis adhesion to monolayers of epithelial cells using wild-type and gingipain mutant strains. These experiments suggested that arginine-specific gingipain (Rgp) catalytic activity modulated adhesion. From the data obtained with rgp mutants, we constructed a working hypothesis predicting that attachment and detachment of P. gingivalis to epithelial cells were mediated by gingipain adhesin and Rgp catalytic domains, respectively. A membrane-based epithelial cell binding assay, used to locate adhesins in extracellular fractions of wild-type and mutant strains, recognized gingipain peptides as adhesins rather than fimbriae. We developed a capture assay that demonstrated the binding of gingipain adhesin peptides to oral epithelial cells. The adherence of fimbrillin to epithelial cells was detected after heat denaturation of cell fractions. The prediction that Rgp catalytic activities mediated detachment was substantiated when the high level of attachment of anrgp mutant was reduced in the presence of wild-type cell fractions that contained gingipain catalytic activities.


Infection and Immunity | 2001

Cloning of the Streptococcus mutans Gene Encoding Glucan Binding Protein B and Analysis of Genetic Diversity and Protein Production in Clinical Isolates

Renata O. Mattos-Graner; Song Jin; William F. King; Tsute Chen; Daniel J. Smith; Margaret J. Duncan

ABSTRACT Streptococcus mutans, the primary etiological agent of dental caries, produces several activities that promote its accumulation within the dental biofilm. These include glucosyltransferases, their glucan products, and proteins that bind glucan. At least three glucan binding proteins have been identified, and GbpB, the protein characterized in this study, appears to be novel. The gbpB gene was cloned and the predicted protein sequence contained several unusual features and shared extensive homology with a putative peptidoglycan hydrolase from group B streptococcus. Examination of gbpB genes from clinical isolates ofS. mutans revealed that DNA polymorphisms, and hence amino acid changes, were limited to the central region of the gene, suggesting functional conservation within the amino and carboxy termini of the protein. The GbpB produced by clinical isolates and laboratory strains showed various distributions between cells and culture medium, and amounts of protein produced by individual strains correlated positively with their ability to grow as biofilms in an in vitro assay.


PLOS ONE | 2012

The Canine Oral Microbiome

Floyd E. Dewhirst; Erin A. Klein; Emily C. Thompson; Jessica M. Blanton; Tsute Chen; Lisa Milella; Catherine Buckley; Ian J. Davis; Marie-Lousie Bennett; Zoe Marshall-Jones

Determining the bacterial composition of the canine oral microbiome is of interest for two primary reasons. First, while the human oral microbiome has been well studied using molecular techniques, the oral microbiomes of other mammals have not been studied in equal depth using culture independent methods. This study allows a comparison of the number of bacterial taxa, based on 16S rRNA-gene sequence comparison, shared between humans and dogs, two divergent mammalian species. Second, canine oral bacteria are of interest to veterinary and human medical communities for understanding their roles in health and infectious diseases. The bacteria involved are mostly unnamed and not linked by 16S rRNA-gene sequence identity to a taxonomic scheme. This manuscript describes the analysis of 5,958 16S rRNA-gene sequences from 65 clone libraries. Full length 16S rRNA reference sequences have been obtained for 353 canine bacterial taxa, which were placed in 14 bacterial phyla, 23 classes, 37 orders, 66 families, and 148 genera. Eighty percent of the taxa are currently unnamed. The bacterial taxa identified in dogs are markedly different from those of humans with only 16.4% of oral taxa are shared between dogs and humans based on a 98.5% 16S rRNA sequence similarity cutoff. This indicates that there is a large divergence in the bacteria comprising the oral microbiomes of divergent mammalian species. The historic practice of identifying animal associated bacteria based on phenotypic similarities to human bacteria is generally invalid. This report describes the diversity of the canine oral microbiome and provides a provisional 16S rRNA based taxonomic scheme for naming and identifying unnamed canine bacterial taxa.


Journal of Bacteriology | 2004

Comparative Whole-Genome Analysis of Virulent and Avirulent Strains of Porphyromonas gingivalis

Tsute Chen; Yumiko Hosogi; Kiyoshi Nishikawa; Kevin Abbey; Robert D. Fleischmann; Jennifer Walling; Margaret J. Duncan

We used Porphyromonas gingivalis gene microarrays to compare the total gene contents of the virulent strain W83 and the avirulent type strain, ATCC 33277. Signal ratios and scatter plots indicated that the chromosomes were very similar, with approximately 93% of the predicted genes in common, while at least 7% of them showed very low or no signals in ATCC 33277. Verification of the array results by PCR indicated that several of the disparate genes were either absent from or variant in ATCC 33277. Divergent features included already reported insertion sequences and ragB, as well as additional hypothetical and functionally assigned genes. Several of the latter were organized in a putative operon in W83 and encoded enzymes involved in capsular polysaccharide synthesis. Another cluster was associated with two paralogous regions of the chromosome with a low G+C content, at 41%, compared to that of the whole genome, at 48%. These regions also contained conserved and species-specific hypothetical genes, transposons, insertion sequences, and integrases and were located adjacent to tRNA genes; thus, they had several characteristics of pathogenicity islands. While this global comparative analysis showed the close relationship between W83 and ATCC 33277, the clustering of genes that are present in W83 but divergent in or absent from ATCC 33277 is suggestive of chromosomal islands that may have been acquired by lateral gene transfer.


Journal of Endodontics | 2015

Microbiomes of Endodontic-Periodontal Lesions before and after Chemomechanical Preparation.

Brenda P.F.A. Gomes; Vanessa Bellocchio Berber; Alexis Kokaras; Tsute Chen; Bruce J. Paster

INTRODUCTION This study was conducted to evaluate the microbiomes of endodontic-periodontal lesions before and after chemomechanical preparation (CMP). METHODS Clinical samples were taken from 15 root canals (RCs) with necrotic pulp tissues and from their associated periodontal pockets (PPs) (n = 15) of teeth with endodontic-periodontal lesions before and after CMP. The Human Oral Microbe Identification using Next Generation Sequencing (NGS) protocol and viable culture were used to analyze samples from RCs and PPs. The Mann-Whitney U test and Benjamini-Hochberg corrections were performed to correlate the clinical and radiographic findings with microbial findings (P < .05). RESULTS Bacteria were detected in 100% of the samples in both sites (15/15) using NGS. Firmicutes was the most predominant phylum in both sites using both methods. The most frequently detected species in the RCs before and after CMP using NGS were Enterococcus faecalis, Parvimonas micra, Mogibacterium timidum, Filifactor alocis, and Fretibacterium fastidiosum. The species most frequently detected in the PPs before and after CMP using NGS were P. micra, E. faecalis, Streptococcus constellatus, Eubacterium brachy, Tannerella forsythia, and F. alocis. Associations were found between periapical lesions ≤ 2 mm and Desulfobulbus sp oral taxon 041 and with periodontal pockets ≥ 6 mm and Dialister invisius and Peptostreptococcus stomatis (all P < .05, found in the RCs before CMP). CONCLUSIONS It is concluded that the microbial community present in combined endodontic-periodontal lesions is complex and more diverse than previously reported. It is important to note that bacteria do survive in some root canals after CMP. Finally, the similarity between the microbiota of both sites, before and after CMP, suggests there may be a pathway of infection between the pulp and periodontium.


Nucleic Acids Research | 2005

The bioinformatics resource for oral pathogens

Tsute Chen; Kevin Abbey; Wen-jie Deng; Meng-chuan Cheng

Complete genomic sequences of several oral pathogens have been deciphered and multiple sources of independently annotated data are available for the same genomes. Different gene identification schemes and functional annotation methods used in these databases present a challenge for cross-referencing and the efficient use of the data. The Bioinformatics Resource for Oral Pathogens (BROP) aims to integrate bioinformatics data from multiple sources for easy comparison, analysis and data-mining through specially designed software interfaces. Currently, databases and tools provided by BROP include: (i) a graphical genome viewer (Genome Viewer) that allows side-by-side visual comparison of independently annotated datasets for the same genome; (ii) a pipeline of automatic data-mining algorithms to keep the genome annotation always up-to-date; (iii) comparative genomic tools such as Genome-wide ORF Alignment (GOAL); and (iv) the Oral Pathogen Microarray Database. BROP can also handle unfinished genomic sequences and provides secure yet flexible control over data access. The concept of providing an integrated source of genomic data, as well as the data-mining model used in BROP can be applied to other organisms. BROP can be publicly accessed at .


Infection and Immunity | 2000

Identification and cloning of genes from Porphyromonas gingivalis after mutagenesis with a modified Tn4400 transposon from Bacteroides fragilis.

Tsute Chen; Hong Dong; Yixin P. Tang; Mary M. Dallas; Michael H. Malamy; Margaret J. Duncan

ABSTRACT Porphyromonas gingivalis is a gram-negative, black-pigmented, oral anaerobe strongly associated with adult periodontitis. Previous transposon mutagenesis studies with this organism were based on the Bacteroides transposon Tn4351. Characterization of Tn4351-disrupted genes by cloning has not been an efficient way to analyze large numbers of mutants and is further complicated by the high rate of cointegration of the suicide delivery vector containing Tn4351. In this study, we mutagenized P. gingivalis with a modified version of the Bacteroides fragilis transposon Tn4400. Plasmid pYT646B carrying the transposon was mobilized fromEscherichia coli to P. gingivalis ATCC 33277 by conjugation. Both normal and inverse transposition frequencies were similar (3 × 10−8). However, the inverse transposon (Tn4400′) contains a pBR322 replicon and a β-lactamase gene; thus, the cloning of disrupted genomic DNAs from inverse transposition mutants was easily accomplished after ligation of genomic fragments and transformation into E. coli. Thousands of transconjugants could be obtained in a single mating experiment, and inverse transposition was random as demonstrated by Southern hybridization. By this procedure the disrupted genes from P. gingivalis pleiotropic mutants were quickly cloned, sequenced, and identified.


PLOS ONE | 2015

Oral Microbiota Shift after 12-Week Supplementation with Lactobacillus reuteri DSM 17938 and PTA 5289; A Randomized Control Trial

Nelly Romani Vestman; Tsute Chen; Pernilla Lif Holgerson; Carina Öhman; Ingegerd Johansson

Background Lactobacillus spp. potentially contribute to health by modulating bacterial biofilm formation, but their effects on the overall oral microbiota remain unclear. Methods and Findings Oral microbiota was characterized via 454-pyrosequencing of the 16S rDNA hypervariable region V3-V4 after 12 weeks of daily Lactobacillus reuteri DSM 17938 and PTA 5289 consumption. Forty-four adults were assigned to a test group (n = 22) that received lactobacilli lozenges (108 CFU of each strain/lozenge) or a control group that received placebo (n = 22). Presence of L. reuteri was confirmed by cultivation and species specific PCR. Tooth biofilm samples from 16 adults before, during, and after exposure were analyzed by pyrosequencing. A total of 1,310,292 sequences were quality filtered. After removing single reads, 257 species or phylotypes were identified at 98.5% identity in the Human Oral Microbiome Database. Firmicutes, Bacteroidetes, Fusobacteria, Proteobacteria, and Actinobacteria were the most abundant phyla. Streptococcus was the most common genus and the S. oralis/S. mitis/S. mitis bv2/S. infantis group comprised the dominant species. The number of observed species was unaffected by L. reuteri exposure. However, subjects who had consumed L. reuteri were clustered in a principal coordinates analysis relative to scattering at baseline, and multivariate modeling of pyrosequencing microbiota, and culture and PCR detected L. reuteri separated baseline from 12-week samples in test subjects. L. reuteri intake correlated with increased S. oralis/S. mitis/S. mitis bv2/S. infantis group and Campylobacter concisus, Granulicatella adiacens, Bergeyella sp. HOT322, Neisseria subflava, and SR1 [G-1] sp. HOT874 detection and reduced S. mutans, S. anginosus, N. mucosa, Fusobacterium periodicum, F. nucleatum ss vincentii, and Prevotella maculosa detection. This effect had disappeared 1 month after exposure was terminated. Conclusions L. reuteri consumption did not affect species richness but induced a shift in the oral microbiota composition. The biological relevance of this remains to be elucidated. Trial Registration ClinicalTrials.gov NCT02311218


Genome Announcements | 2015

Draft Genome Sequence of Tannerella forsythia Type Strain ATCC 43037.

Valentin Friedrich; Stephan Pabinger; Tsute Chen; Paul Messner; Floyd E. Dewhirst; Christina Schäffer

ABSTRACT Tannerella forsythia is an oral pathogen implicated in the development of periodontitis. Here, we report the draft genome sequence of the Tannerella forsythia strain ATCC 43037. The previously available genome of this designation (NCBI reference sequence NC_016610.1) was discovered to be derived from a different strain, FDC 92A2 (= ATCC BAA-2717).

Collaboration


Dive into the Tsute Chen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge