Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tsutomu Hatano is active.

Publication


Featured researches published by Tsutomu Hatano.


Molecules | 2015

Constituents of Psoralea corylifolia Fruits and Their Effects on Methicillin-Resistant Staphylococcus aureus

Yanmei Cui; Shoko Taniguchi; Teruo Kuroda; Tsutomu Hatano

Two new flavonoids, bakuisoflavone (1) and bakuflavanone (2), together with 15 known compounds, were isolated from the fruits of Psoralea corylifolia, and their structures were characterized by spectroscopic data. The effects of the isolated compounds on methicillin-resistant Staphylococcus aureus were also examined. We found that two compounds, isobavachalcone (10) and bakuchiol (12), showed noticeable antibacterial effects on the MRSA strains examined. Quantitation of the major constituents, including anti-MRSA constituents, was then performed. The results showed individual contents of 1.26%–16.49% (w/w) among the examined compounds in the ethyl acetate extract from P. corylifolia fruits.


Biochimica et Biophysica Acta | 2015

Action mechanism of 6, 6′-dihydroxythiobinupharidine from Nuphar japonicum, which showed anti-MRSA and anti-VRE activities

Shinya Okamura; Eri Nishiyama; Tomohiro Yamazaki; Nao Otsuka; Shoko Taniguchi; Wakano Ogawa; Tsutomu Hatano; Tomofusa Tsuchiya; Teruo Kuroda

BACKGROUNDnMultidrug-resistant bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin resistant enterococci (VRE), cause serious infections at clinical sites, for which the development of new drugs is necessary. We screened candidates for new antibiotics and investigated its action mechanism.nnnMETHODSnAn antimicrobial compound was isolated from an extract of Nuphar japonicum. Its chemical structure was determined by NMR, MS, and optical rotation. We measured its minimum inhibitory concentration (MIC) using the microdilution method. The effects of the compound on DNA gyrase and DNA topoisomerase IV were investigated with DNA supercoiling, decatenation, and cleavage assay.nnnRESULTSnWe isolated and identified 6,6-dihydroxythiobinupharidine as the antimicrobial compound. The MIC of this compound was 1-4 μg/mL against various MRSA and VRE strains. We also demonstrated that this compound inhibited DNA topoisomerase IV (IC50 was 10-15 μM), but not DNA gyrase in S. aureus, both of which are known to be the targets of quinolone antibiotics and necessary for DNA replication. However, this compound only exhibited slight cross-resistance to norfloxacin-resistant S. aureus, which indicated that DTBN might inhibit other targets besides topoisomerase IV. These results suggest that 6,6-dihydroxythiobinupharidine may be a potent candidate or seed for novel antibacterial agents.nnnCONCLUSIONSnDTBN from N. japonicum showed anti-MRSA and anti-VRE activities. DTBN might be involved in the inhibition of DNA topoisomerase IV.nnnGENERAL SIGNIFICANCEnDTBN might be useful as a seed compound. The information on the inhibition mechanism of DTBN will be useful for the modification of DTBN towards developing novel anti-MRSA and anti-VRE drug.


Molecules | 2014

Structures of two new flavonoids and effects of licorice phenolics on vancomycin-resistant Enterococcus species.

Eerdunbayaer; Mohamed A.A. Orabi; Hiroe Aoyama; Teruo Kuroda; Tsutomu Hatano

Since our previous study revealed that several licorice phenolics have antibacterial effects on methicillin-resistant Staphylococcus aureus (MRSA), and suppressive effects on the oxacillin resistance of MRSA, we further investigated effectiveness of licorice constituents on vancomycin-resistant Enterococcus (VRE) bacteria, and purified 32 phenolic compounds. Two flavonoids among them were characterized structurally, and identified their structures as demethylglycyrol (31) and 5,7-di-O-methylluteone (32), respectively. Examination of antibacterial effects of licorice phenolics showed that 3-arylcoumarins such as licoarylcoumarin (9) and glycycoumarin (26), and 2-arylcoumarones such as gancaonin I (17), have moderate to potent antibacterial effects on the VRE strains used in this study.


Molecules | 2014

Structures of New Phenolics Isolated from Licorice, and the Effectiveness of Licorice Phenolics on Vancomycin-Resistant Enterococci

Eerdunbayaer; Mohamed A.A. Orabi; Hiroe Aoyama; Teruo Kuroda; Tsutomu Hatano

Licorice, which is the underground part of Glycyrrhiza species, has been used widely in Asian and Western countries as a traditional medicine and as a food additive. Our continuous investigation on the constituents of roots and stolons of Glycyrrhiza uralensis led to the isolation of two new phenolics, in addition to 14 known compounds. Structural studies including spectroscopic and simple chemical derivatizations revealed that both of the new compounds had 2-aryl-3-methylbenzofuran structures. An examination of the effectiveness of licorice phenolics obtained in this study on vancomycin-resistant strains Enterococcus faecium FN-1 and Enterococcus faecalis NCTC12201 revealed that licoricidin showed the most potent antibacterial effects against both of E. faecalis and E. faecium with a minimum inhibitory concentration (MIC) of 1.9 × 10−5 M. 8-(γ,γ-Dimethylallyl)-wighteone, isoangustone A, 3-(γ,γ-dimethylallyl)-kievitone, glyasperin C, and one of the new 3-methyl-2-phenylbenzofuran named neoglycybenzofuran also showed potent anti-vancomycin-resistant Enterococci effects (MIC 1.9 × 10−5–4.5 × 10−5 M for E. faecium and E. faecalis). The HPLC condition for simultaneous detection of the phenolics in the extract was investigated to assess the quality control of the natural antibacterial resource, and quantitative estimation of several major phenolics in the extract with the established HPLC condition was also performed. The results showed individual contents of 0.08%–0.57% w/w of EtOAc extract for the major phenolics in the materials examined.


Journal of Organic Chemistry | 2013

Roxbin B is Cuspinin: Structural Revision and Total Synthesis

Sayuri Yamaguchi; Tsukasa Hirokane; Takashi Yoshida; Takashi Tanaka; Tsutomu Hatano; Hideyuki Ito; Gen Ichiro Nonaka; Hidetoshi Yamada

Prompted by the outcome that the synthesized roxbin B was not identical to the natural roxbin B, the structural determination process and spectral data were re-examined, with the finding that roxbin B was very likely to be 1-O-galloyl-2,3-(R);4,6-(S)-bis-O-hexahydroxydiphenoyl-β-d-glucose (cuspinin). Because the (R)-axial chirality is rare in natural products when the hexahydroxydiphenoyl group bridges the 2- and 3-oxygens, the proposed structure of cuspinin was confirmed by the total synthesis, leading to the conclusion that roxbin B is the same as cuspinin.


Fitoterapia | 2015

Ellagitannins, gallotannins, and gallo-ellagitannins from the galls of Tamarix aphylla.

Mohamed A.A. Orabi; Morio Yoshimura; Yoshiaki Amakura; Tsutomu Hatano

Chromatographic separation of an aqueous acetone extract of the galls from Tamarix aphylla using gels resulted in isolation of an ellagitannin, phyllagallin M1 (13), a gallo-ellagitannin, phyllagallin D1 (14), and four gallotannins, phyllagallin M2 (15) and phyllagallins D2-D4 (16-18), in addition to four known ellagitannins and three phenolics of lower molecular weight structurally related to hydrolyzable tannins. The structures of the six new tannins were elucidated based on spectroscopic and chemical data. Among the phenolics, flavogallonic acid dilactone (8), which is presumed to be biogenetically produced by C-C oxidative coupling of an ellagic acid unit with a galloyl residue, shows an exceptional oxidative pattern of gallic acid residues in plants of the family Tamaricaceae. Although the ellagitannin tamarixellagic acid (4) was reported to be a constituent of the galls of T. aphylla, such compounds with anomalous location of the DHDG moiety at O-3 on the glucopyranose core have not been observed among the tannins of tamaricaceous plants.


Molecules | 2017

Ellagitannins of Davidia involucrata. I. Structure of Davicratinic Acid A and Effects of Davidia Tannins on Drug-Resistant Bacteria and Human Oral Squamous Cell Carcinomas

Yuuki Shimozu; Yuriko Kimura; Akari Esumi; Hiroe Aoyama; Teruo Kuroda; Hiroshi Sakagami; Tsutomu Hatano

We isolated a new ellagitannin, davicratinic acid A (5), together with four known ellagitannins, davidiin (1), granatin A (2), pedunculagin (3), and 3-O-galloylgranatin A (4), from an aqueous acetone extract of dried Davidia involucrata leaves. The known ellagitannins were identified based on spectroscopic data. The structure of davicratinic acid A (5), a monomeric ellagitannin possessing a unique, skew-boat glucopyranose core, was established based on spectroscopic data. Additionally, we examined the effects of several tannins with good yields from this plant on drug-resistant bacteria and human oral squamous cell carcinomas, and found that davidiin (1) exhibited the most potent antibacterial and antitumor properties among the tannins examined.


Bioscience, Biotechnology, and Biochemistry | 2018

Three new flavonoids, proanthocyanidin, and accompanying phenolic constituents from Feijoa sellowiana

Hiroe Aoyama; Hiroshi Sakagami; Tsutomu Hatano

Abstract Our investigation of phenolic constituents of fruits, flower buds, and leaves of Feijoa sellowiana led to the isolation of twenty-one phenolics including three new gossypetin glycosides 1–3, and also the purification of a proanthocyanidin fraction. A high-performance liquid chromatography method for simultaneous analysis of phenolic constituents was established and then used to investigate the phenolic profiles of the parts of the plant species, to show the presence of characteristic flavonoids and ellagic acid derivatives or ellagitannins in the extracts from fruits, flower buds, and leaves. The branch extract profile also suggested the presence of alkylated ellagic acids as characteristic constituents. Inhibitory effects of feijoa flavonoids on mushroom tyrosinase were seen, although in some cases this may have resulted from direct interaction with the enzyme. Cytotoxic effect of the proanthocyanidin fraction was also shown. New flavonoids were found in various parts of Feijoa sellowiana.


Molecules | 2017

Antifungal and Ichthyotoxic Sesquiterpenoids from Santalum album Heartwood

Tae Hoon Kim; Tsutomu Hatano; Keinosuke Okamoto; Takashi Yoshida; Hiroshi Kanzaki; Michiko Arita; Hideyuki Ito

In our continuing study on a survey of biologically active natural products from heartwood of Santalum album (Southwest Indian origin), we newly found potent fish toxic activity of an n-hexane soluble extract upon primary screening using killifish (medaka) and characterized α-santalol and β-santalol as the active components. The toxicity (median tolerance limit (TLm) after 24 h at 1.9 ppm) of α-santalol was comparable with that of a positive control, inulavosin (TLm after 24 h at 1.3 ppm). These fish toxic compounds including inulavosin were also found to show a significant antifungal effect against a dermatophytic fungus, Trichophyton rubrum. Based on a similarity of the morphological change of the immobilized Trichophyton hyphae in scanning electron micrographs between treatments with α-santalol and griseofulvin (used as the positive control), inhibitory effect of α-santalol on mitosis (the antifungal mechanism proposed for griseofulvin) was assessed using sea urchin embryos. As a result, α-santalol was revealed to be a potent antimitotic agent induced by interference with microtubule assembly. These data suggested that α-santalol or sandalwood oil would be promising to further practically investigate as therapeutic agent for cancers as well as fungal skin infections.


Journal of Natural Products | 2016

Hydrolyzable Tannins of Tamaricaceous Plants. 7.1 Structures and Cytotoxic Properties of Oligomeric Ellagitannins from Leaves of Tamarix nilotica and Cultured Tissues of Tamarix tetrandra

Mohamed A.A. Orabi; Shoko Taniguchi; Hiroshi Sakagami; Morio Yoshimura; Yoshiaki Amakura; Tsutomu Hatano

Partially unacylated new oligomeric hydrolyzable tannins, nilotinin T2 (1, trimer) and nilotinin Q1 (2, tetramer), together with four known trimers, nilotinin T1 (3) and hirtellins T1-T3 (4-6), and a dimer, tamarixinin B (7), were isolated from the aqueous acetone extracts of leaves of Tamarix nilotica. Among them, the new trimer 1 and the known trimers 4 and 6, in addition to the partially unacylated new trimer nilotinin T3 (8), the known dimers nilotinin D3 (9) and tamarixinin C (10), and the monomer tellimagrandin I (11), were isolated from the cultured shoots of Tamarix tetrandra. The structures of the new hydrolyzable tannins were established by chromatographic analyses and extensive 1D and 2D NMR, HRESI-TOFMS, and ECD spectroscopic experiments. Among the new oligomeric tannins, the particular unacylated position of a glucose core is attributed to a possible biosynthetic route. Isolation of the same oligomeric tannins from cultured shoots of T. tetrandra emphasizes the unique biogenetic ability of the obtained cultures on production of the structurally and biologically characteristic tamaricaceous tannins commonly produced by the intact Tamarix plants. Additionally, tannins obtained in the present study together with gemin D (12) and 1,3-di-O-galloyl-4,6-O-(aS)-hexahydroxydiphenoyl-β-d-glucose (13), from our previous investigation of the leaves of T. nilotica, exhibited variable tumor-specific cytotoxic effects. The ellagitannin trimers 4, 6, and 8 and the dimer 9 exerted predominant tumor-selective cytotoxic effects with high specificity toward human promyelocytic leukemia cells.

Collaboration


Dive into the Tsutomu Hatano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hideyuki Ito

Okayama Prefectural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge