Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tsuyoshi Araki is active.

Publication


Featured researches published by Tsuyoshi Araki.


Molecular Cell | 2001

Tyrosine Phosphorylation-Independent Nuclear Translocation of a Dictyostelium STAT in Response to DIF Signaling

Masashi Fukuzawa; Tsuyoshi Araki; Iris Adrian; Jeffrey G. Williams

We describe a Dictyostelium STAT, Dd-STATc, which regulates the speed of early development and the timing of terminal differentiation. Dd-STATc also functions as a repressor, which directs graded expression of the ecmA gene in different prestalk cell populations. Developing Dictyostelium cells produce a chlorinated hexaphenone, DIF, which directs prestalk cell differentiation. Dd-STATc is tyrosine phosphorylated, dimerizes, and translocates to the nucleus when cells are exposed to DIF. Surprisingly, however, SH2 domain-phosphotyrosine interaction is not necessary for the DIF-induced nuclear translocation of Dd-STATc. In this respect, Dd-STATc activation resembles several recently described, noncanonical mammalian STAT signaling processes. We show instead that DIF mediates nuclear translocation via sequences located in the divergent, N-terminal half of the Dd-STATc molecule.


Development | 2006

The Dictyostelium bZIP transcription factor DimB regulates prestalk-specific gene expression.

Natasha Zhukovskaya; Masashi Fukuzawa; Yoko Yamada; Tsuyoshi Araki; Jeffrey G. Williams

The ecmA gene is specifically expressed in prestalk cells and its transcription is induced by the chlorinated hexaphenone DIF-1. We have purified a novel bZIP transcription factor, DimB, by affinity chromatography on two spatially separated ecmA promoter fragments. Mutagenesis of the cap-site proximal DimB-binding site (the -510 site) greatly decreases ecmA expression in the pstO cells, which comprise the rear half of the prestalk zone, and also in the Anterior-Like Cells, which lie scattered throughout the prespore region. However, DimB is not essential for normal expression of the ecmA gene, instead it spatially limits its expression; ecmA is relatively highly expressed in the subset of prestalk cells that coats the prestalk zone, but in slugs of a DimB-null strain, ecmA is highly expressed throughout the prestalk zone. Because the -510 site is required for correct ecmA expression, we posit a separate activator protein that competes with DimB for binding to the -510 site. DimB rapidly accumulates in the nucleus when cells are exposed to DIF-1, and ChIP analysis shows that, in the presence of extracellular cAMP, DIF-1 causes DimB to associate with the ecmA promoter in vivo. Thus, DIF-1 regulates DimB activity to generate a gradient of ecmA expression in the prestalk zone of the slug.


Development | 2006

Regulation of Dictyostelium prestalk-specific gene expression by a SHAQKY family MYB transcription factor

Masashi Fukuzawa; Natasha Zhukovskaya; Yoko Yamada; Tsuyoshi Araki; Jeffrey G. Williams

PstA and pstO cells are the two major populations in the prestalk region of the Dictyostelium slug and DIF-1 is a low molecular weight signalling molecule that selectively induces pstO cell-specific gene expression. The two cell types are defined by their differential use of spatially separated regions of the ecmA promoter. Additionally, there are anterior-like cells (ALCs) scattered throughout the rear, prespore region of the slug. They, like the pstO cells, use a cap-site distal ecmA promoter segment termed the ecmO region. When multimerised, a 22-nucleotide subsegment of the ecmO region directs expression in pstA cells, pstO cells and ALCs. It also directs DIF-inducible gene expression. The 22-nucleotide region was used to purify MybE, a protein with a single MYB DNA-binding domain of a type previously found only in a large family of plant transcription factors. Slugs of a mybE-null (mybE–) strain express an ecmAO:lacZ fusion gene (i.e. a reporter construct containing the ecmA and ecmO promoter regions) in pstA cells but there is little or no expression in pstO cells and ALCs. The ecmA gene is not induced by DIF-1 in a mybE-strain. Thus, MybE is necessary for DIF-1 responsiveness and for the correct differentiation of pstO cells and ALCs.


Journal of Cell Science | 2003

A STAT-regulated, stress-induced signalling pathway in Dictyostelium

Tsuyoshi Araki; Masatsune Tsujioka; Tomoaki Abe; Masashi Fukuzawa; Marcel Meima; Pauline Schaap; Takahiro Morio; Hideko Urushihara; Mariko Katoh; Mineko Maeda; Yoshimasa Tanaka; Ikuo Takeuchi; Jeffrey G. Williams

The Dictyostelium stalk cell inducer differentiation-inducing factor (DIF) directs tyrosine phosphorylation and nuclear accumulation of the STAT (signal transducer and activator of transcription) protein Dd-STATc. We show that hyperosmotic stress, heat shock and oxidative stress also activate Dd-STATc. Hyperosmotic stress is known to elevate intracellular cGMP and cAMP levels, and the membrane-permeant analogue 8-bromo-cGMP rapidly activates Dd-STATc, whereas 8-bromo-cAMP is a much less effective inducer. Surprisingly, however, Dd-STATc remains stress activatable in null mutants for components of the known cGMP-mediated and cAMP-mediated stress-response pathways and in a double mutant affecting both pathways. Also, Dd-STATc null cells are not abnormally sensitive to hyperosmotic stress. Microarray analysis identified two genes, gapA and rtoA, that are induced by hyperosmotic stress. Osmotic stress induction of gapA and rtoA is entirely dependent on Dd-STATc. Neither gene is inducible by DIF but both are rapidly inducible with 8-bromo-cGMP. Again, 8-bromo-cAMP is a much less potent inducer than 8-bromo-cGMP. These data show that Dd-STATc functions as a transcriptional activator in a stress-response pathway and the pharmacological evidence, at least, is consistent with cGMP acting as a second messenger.


Development | 2004

GSK3 is a multifunctional regulator of Dictyostelium development.

Christina Schilde; Tsuyoshi Araki; Hazel Williams; Adrian J. Harwood; Jeffrey G. Williams

Glycogen synthase kinase 3 (GSK3) is a central regulator of metazoan development and the Dictyostelium GSK3 homologue, GskA, also controls cellular differentiation. The originally derived gskA-null mutant exhibits a severe pattern formation defect. It forms very large numbers of pre-basal disc cells at the expense of the prespore population. This defect arises early during multicellular development, making it impossible to examine later functions of GskA. We report the analysis of a gskA-null mutant, generated in a different parental strain, that proceeds through development to form mature fruiting bodies. In this strain, Ax2/gskA–, early development is accelerated and slug migration greatly curtailed. In a monolayer assay of stalk cell formation, the Ax2/gskA– strain is hypersensitive to the stalk cell-inducing action of DIF-1 but largely refractory to the repressive effect exerted by extracellular cAMP. During normal development, apically situated prestalk cells express the ecmB gene just as they commit themselves to stalk cell differentiation. In the Ax2/gskA– mutant, ecmB is expressed throughout the prestalk region of the slug, suggesting that GskA forms part of the repressive signalling pathway that prevents premature commitment to stalk cell differentiation. GskA may also play an inductive developmental role, because microarray analysis identifies a large gene family, the 2C family, that require gskA for optimal expression. These observations show that GskA functions throughout Dictyostelium development, to regulate several key aspects of cellular patterning.


Journal of Cell Science | 2008

A Dictyostelium homologue of the metazoan Cbl proteins regulates STAT signalling

Judith Langenick; Tsuyoshi Araki; Yoko Yamada; Jeffrey G. Williams

Cbl proteins downregulate metazoan signalling pathways by ubiquitylating receptor tyrosine kinases, thereby targeting them for degradation. They contain a phosphotyrosine-binding region, comprising an EF-hand and an SH2 domain, linked to an E3 ubiquitin-ligase domain. CblA, a Dictyostelium homologue of the Cbl proteins, contains all three conserved domains. In a cblA– strain early development occurs normally but migrating cblA– slugs frequently fragment and the basal disc of the culminants that are formed are absent or much reduced. These are characteristic features of mutants in signalling by DIF-1, the low-molecular-mass prestalk and stalk cell inducer. Tyrosine phosphorylation of STATc is induced by DIF-1 but in the cblA– strain this response is attenuated relative to parental cells. We present evidence that CblA fulfils this function, as a positive regulator of STATc tyrosine phosphorylation, by downregulating PTP3, the protein tyrosine phosphatase responsible for dephosphorylating STATc. Thus Cbl proteins have an ancient origin but, whereas metazoan Cbl proteins regulate tyrosine kinases, the Dictyostelium Cbl regulates via a tyrosine phosphatase.


Development | 2008

Evidence that DIF-1 and hyper-osmotic stress activate a Dictyostelium STAT by inhibiting a specific protein tyrosine phosphatase.

Tsuyoshi Araki; Judith Langenick; Marianne Gamper; Richard A. Firtel; Jeffrey G. Williams

STATc becomes tyrosine phosphorylated and accumulates in the nucleus when Dictyostelium cells are exposed to the prestalk cell inducer Differentiation inducing factor 1 (DIF-1), or are subjected to hyper-osmotic stress. We show that the protein tyrosine phosphatase PTP3 interacts directly with STATc and that STATc is refractory to activation in PTP3 overexpressing cells. Conversely, overexpression of a dominant inhibitor of PTP3 leads to constitutive tyrosine phosphorylation and ectopic nuclear localisation of STATc. Treatment of cells with DIF-1 or exposure to hyper-osmotic stress induces a decrease in biochemically assayable PTP3 activity and both agents also induce serine-threonine phosphorylation of PTP3. These observations suggest a novel mode of STAT activation, whereby serine-threonine phosphorylation of a cognate protein tyrosine phosphatase results in the inhibition of its activity, shifting the phosphorylation-dephosphorylation equilibrium in favour of phosphorylation.


Eukaryotic Cell | 2007

Proteomic and Microarray Analyses of the Dictyostelium Zak1-GSK-3 Signaling Pathway Reveal a Role in Early Development

Lana Strmecki; Gareth Bloomfield; Tsuyoshi Araki; Emma Dalton; Jason Skelton; Christina Schilde; Adrian J. Harwood; Jeffrey G. Williams; Al Ivens; Catherine J. Pears

ABSTRACT GskA, the Dictyostelium GSK-3 orthologue, is modified and activated by the dual-specificity tyrosine kinase Zak1, and the two kinases form part of a signaling pathway that responds to extracellular cyclic AMP. We identify potential cellular effectors for the two kinases by analyzing the corresponding null mutants. There are proteins and mRNAs that are altered in abundance in only one or the other of the two mutants, indicating that each kinase has some unique functions. However, proteomic and microarray analyses identified a number of proteins and genes, respectively, that are similarly misregulated in both mutant strains. The positive correlation between the array data and the proteomic data is consistent with the Zak1-GskA signaling pathways functioning by directly or indirectly regulating gene expression. The discoidin 1 genes are positively regulated by the pathway, while the abundance of the H5 protein is negatively regulated. Two of the targets, H5 and discoidin 1, are well-characterized markers for early development, indicating that the Zak1-GskA pathway plays a role in development earlier than previously observed.


The International Journal of Developmental Biology | 2012

An orthologue of the Myelin-gene Regulatory Transcription Factor regulates Dictyostelium prestalk differentiation.

Hiroshi Senoo; Hong-Yu Wang; Tsuyoshi Araki; Jeffrey G. Williams; Masashi Fukuzawa

The prestalk region of the Dictyostelium slug is comprised of an anterior population of pstA cells and a posterior population of pstO cells. They are distinguished by their ability to utilize different parts of the promoter of the ecmA gene. We identify, by mutational analysis and DNA transformation, CA-rich sequence elements within the ecmA promoter that are essential for pstA-specific expression and sufficient to direct pstA-specific expression when multimerised. The CA-rich region was used in affinity chromatography with nuclear extracts and bound proteins were identified by mass spectrometry. The CA-rich elements purify MrfA, a protein with extensive sequence similarity to animal Myelin-gene Regulatory Factor (MRF)-like proteins. The MRF-like proteins and MrfA also display more spatially limited but significant sequence similarity with the DNA binding domain of the yeast Ndt80 sporulation-specific transcription factor. Furthermore, the ecmA CA-rich elements show sequence similarity to the core consensus Ndt80 binding site (the MSE) and point mutation of highly conserved arginine residues in MrfA, that in Ndt80 make critical contacts with the MSE, ablate binding of MrfA to its sites within the ecmA promoter. MrfA null strains are delayed in multicellular development and highly defective in pstA-specific gene expression. These results provide a first insight into the intracellular signaling pathway that directs pstA differentiation and identify a non-metazoan orthologue of a family of molecularly uncharacterised transcription factors.


Journal of Cell Science | 2010

Dual regulation of a Dictyostelium STAT by cGMP and Ca2+ signalling

Tsuyoshi Araki; Wouter N. van Egmond; Peter J.M. van Haastert; Jeffrey G. Williams

When cells are exposed to hyperosmotic stress, the Dictyostelium STAT orthologue STATc is rapidly tyrosine phosphorylated. Previous observations suggest a non-paradigmatic mode of STAT activation, whereby stress-induced serine phosphorylation of the PTP3 protein tyrosine phosphatase inhibits its activity towards STATc. We show that two serine residues in PTP3, S448 and S747, are rapidly phosphorylated after osmotic stress. cGMP is a second messenger for hyperosmotic stress response and 8-bromo-cGMP, a membrane-permeable form of cGMP, is a known activator of STATc. GbpC, a cGMP-binding Ras guanine nucleotide exchange factor protein, is a founder member of a protein family that includes LRRK2, the gene commonly mutated in familial Parkinsons disease. Genetic ablation of gbpC prevents STATc activation by 8-bromo-cGMP. However, osmotic-stress-induced activation of STATc occurs normally in the gbpC null mutant. Moreover, 8-bromo-cGMP does not stimulate phosphorylation of S448 and S747 of PTP3 in a wild-type strain. These facts imply the occurrence of redundant activation pathways. We present evidence that intracellular Ca2+ is a parallel second messenger, by showing that agents that elevate intracellular Ca2+ levels are potent STATc activators that stimulate phosphorylation of S448 and S747. We propose that stress-induced cGMP signalling exerts its stimulatory effect by potentiating the activity of a semi-constitutive tyrosine kinase that phosphorylates STATc, whereas parallel, stress-induced Ca2+ signalling represses STATc dephosphorylation through its inhibitory effect on PTP3.

Collaboration


Dive into the Tsuyoshi Araki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Judith Langenick

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge