Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tsuyoshi Homma is active.

Publication


Featured researches published by Tsuyoshi Homma.


American Journal of Physiology-renal Physiology | 2012

Activation of renal angiotensin type 1 receptor contributes to the pathogenesis of progressive renal injury in a rat model of chronic cardiorenal syndrome

Tsuyoshi Homma; Hiroko Sonoda; Kenichi Manabe; Kiyoshi Arai; Makoto Mizuno; Toshio Sada; Masahiro Ikeda

Although chronic cardiac dysfunction is known to progressively exacerbate renal injury, a condition known as type 2 cardiorenal syndrome (CRS), the mechanism responsible is largely unknown. The present study was undertaken to clarify the mechanism of renal injury in rats with both unilateral nephrectomy (NX) and surgically induced myocardial infarction (MI), corresponding to a model of type 2 CRS. Compared with a control group, rats with both MI and NX (MI+NX) exhibited progressive proteinuria during the experimental period (34 wk after MI surgery), whereas proteinuria was not observed in rats with MI alone and was moderate in rats with NX alone. The proteinuria in rats with MI+NX was associated with renal lesions such as glomerulosclerosis and infiltration of mononuclear cells and upregulation of the renal proinflammatory and -fibrotic cytokine and angiotensin II type 1a receptor (AT1aR) genes. In contrast, plasma renin activity was lowered in rats with MI+NX. Immunohistochemistry revealed that the increased AT1R protein was present mainly in renal interstitial mononuclear cells. Olmesartan medoxomil, an AT1R blocker, markedly reduced the proteinuria and infiltration of mononuclear cells, whereas spironolactone, a mineralocorticoid receptor blocker, did not. The present findings demonstrate the pathogenetic role of renal interstitial AT1R signaling in a model of type 2 CRS, providing evidence that AT1R blockade can be a useful therapeutic option for this syndrome.


European Journal of Pharmacology | 2015

Pharmacological profile of CS-3150, a novel, highly potent and selective non-steroidal mineralocorticoid receptor antagonist

Kiyoshi Arai; Tsuyoshi Homma; Yuka Morikawa; Naoko Ubukata; Hiyoyuki Tsuruoka; Kazumasa Aoki; Hirokazu Ishikawa; Makoto Mizuno; Toshio Sada

The present study was designed to characterize the pharmacological profile of CS-3150, a novel non-steroidal mineralocorticoid receptor antagonist. In the radioligand-binding assay, CS-3150 inhibited (3)H-aldosterone binding to mineralocorticoid receptor with an IC50 value of 9.4nM, and its potency was superior to that of spironolactone and eplerenone, whose IC50s were 36 and 713nM, respectively. CS-3150 also showed at least 1000-fold higher selectivity for mineralocorticoid receptor over other steroid hormone receptors, glucocorticoid receptor, androgen receptor and progesterone receptor. In the reporter gene assay, CS-3150 inhibited aldosterone-induced transcriptional activation of human mineralocorticoid receptor with an IC50 value of 3.7nM, and its potency was superior to that of spironolactone and eplerenone, whose IC50s were 66 and 970nM, respectively. CS-3150 had no agonistic effect on mineralocorticoid receptor and did not show any antagonistic or agonistic effect on glucocorticoid receptor, androgen receptor and progesterone receptor even at the high concentration of 5μM. In adrenalectomized rats, single oral administration of CS-3150 suppressed aldosterone-induced decrease in urinary Na(+)/K(+) ratio, an index of in vivo mineralocorticoid receptor activation, and this suppressive effect was more potent and longer-lasting than that of spironolactone and eplerenone. Chronic treatment with CS-3150 inhibited blood pressure elevation induced by deoxycorticosterone acetate (DOCA)/salt-loading to rats, and this antihypertensive effect was more potent than that of spironolactone and eplerenone. These findings indicate that CS-3150 is a selective and highly potent mineralocorticoid receptor antagonist with long-lasting oral activity. This agent could be useful for the treatment of hypertension, cardiovascular and renal disorders.


European Journal of Pharmacology | 2015

CS-3150, a novel non-steroidal mineralocorticoid receptor antagonist, prevents hypertension and cardiorenal injury in Dahl salt-sensitive hypertensive rats

Kiyoshi Arai; Hiroyuki Tsuruoka; Tsuyoshi Homma

The present study was designed to evaluate the antihypertensive and cardiorenal protective effects of CS-3150, a novel non-steroidal mineralocorticoid receptor antagonist, in Dahl salt-sensitive hypertensive rats (DS rats), and to compare the effects with spironolactone and eplerenone. DS rats were fed a control diet (0.3% NaCl) or high salt diet (8% NaCl) from 7 weeks of age. CS-3150 (0.25-2mg/kg), spironolactone (10-100mg/kg) or eplerenone (10-100mg/kg) were orally administered once a day to DS rats fed a high salt diet for 7 weeks. The high salt diet significantly increased systolic blood pressure, which was prevented by treatment with CS-3150 in a dose-dependent manner with no hyperkalemia (>5.5mEq/L). The antihypertensive effect of CS-3150 (0.5mg/kg) was equivalent to that of spironolactone (100mg/kg) and eplerenone (100mg/kg). CS-3150 also suppressed proteinuria and renal hypertrophy induced by the high salt diet. Histopathological examination of kidneys showed that CS-3150 markedly ameliorated glomerulosclerosis, tubular injury and tubulointerstitial fibrosis. In addition, CS-3150 inhibited left ventricular hypertrophy and elevation of plasma brain natriuretic peptide level. In contrast, the cardiorenal protective effects of spironolactone or eplerenone were partial, and the dose-dependency was not clear, especially in eplerenone-treated rats. These results indicate that chronic treatment with CS-3150 exerts antihypertensive and cardiorenal protective effects in a DS hypertensive rat model, and its potency is much superior to that of spironolactone or eplerenone. Thus, CS-3150 could be a promising agent for the treatment of hypertension and cardiorenal disorders.


Journal of Pharmacology and Experimental Therapeutics | 2016

CS-3150, a Novel Nonsteroidal Mineralocorticoid Receptor Antagonist, Shows Preventive and Therapeutic Effects On Renal Injury in Deoxycorticosterone Acetate/Salt-Induced Hypertensive Rats

Kiyoshi Arai; Yuka Morikawa; Naoko Ubukata; Hiroyuki Tsuruoka; Tsuyoshi Homma

The present study was designed to assess both preventive and therapeutic effects of (S)-1-(2-Hydroxyethyl)-4-methyl-N-[4-(methylsulfonyl) phenyl]-5-[2-(trifluoromethyl) phenyl]-1H-pyrrole-3-carboxamide (CS-3150), a novel nonsteroidal mineralocorticoid receptor antagonist, on renal injury in deoxycorticosterone acetate (DOCA)/salt-induced hypertensive rats (DOCA rats). From 7 weeks of age, DOCA was subcutaneously administered once a week for 4 weeks to uninephrectomized rats fed a high-salt diet. In experiment 1, CS-3150 (0.3–3 mg/kg) was orally administered once a day for 4 weeks coincident with DOCA administration. In experiment 2, after establishment of renal injury by 4 weeks of DOCA/salt loading, CS-3150 (3 mg/kg) was orally administered once a day for 4 weeks with or without continuous DOCA administration. In experiment 1, DOCA/salt loading significantly increased systolic blood pressure (SBP), which was prevented by CS-3150 in a dose-dependent manner. Development of renal injury (proteinuria, renal hypertrophy, and histopathological changes in glomeruli and tubule) was also suppressed by CS-3150 with inhibition of mRNA expression of fibrosis, inflammation, and oxidative stress markers. In experiment 2, under continuous DOCA treatment, CS-3150 clearly ameliorated existing renal injury without lowering SBP, indicating that CS-3150 regressed renal injury independent of its antihypertensive action. Moreover, CS-3150 treatment in combination with withdrawal of DOCA showed further therapeutic effect on renal injury accompanied by reduction in SBP. These results demonstrate that CS-3150 not only prevents but also ameliorates hypertension and renal injury in DOCA rats. Therefore, CS-3150 could be a promising agent for the treatment of hypertension and renal disorders, and may have potential to promote regression of renal injury.


European Journal of Pharmacology | 2017

A novel aldosterone synthase inhibitor ameliorates mortality in pressure-overload mice with heart failure.

Shinji Furuzono; Masaki Meguro; Satoru Miyauchi; Shin-ichi Inoue; Tsuyoshi Homma; Keisuke Yamada; Yoh-ichi Tagawa; Futoshi Nara; Takahiro Nagayama

ABSTRACT It has been elucidated that mineralocorticoid receptor antagonists reduce mortality in patients with congestive heart failure and post‐acute myocardial infarction. A direct inhibition of aldosterone synthase (CYP11B2) is also expected to have therapeutic benefits equal in quality to mineralocorticoid receptor antagonists in terms of reducing mineralocorticoid receptor signaling. Therefore, we have screened our chemical libraries and identified a novel and potent aldosterone synthase inhibitor, 2,2,2‐trifluoro‐1‐{4‐[(4‐fluorophenyl)amino]pyrimidin‐5‐y}‐1‐[1‐(methylsulfonyl)piperidin‐4‐yl]ethanol (compound 1), by lead optimization. Pharmacological properties of compound 1 were examined in in vitro cell‐based assays and an in vivo mouse model of pressure‐overload hypertrophy by transverse aortic constriction (TAC). Compound 1 showed potent CYP11B2 inhibition against human and mouse enzymes (IC50; 0.003 &mgr;M and 0.096 &mgr;M, respectively) in a cell‐based assay. The oral administration of 0.06% compound 1 in the food mixture of a mouse TAC model significantly reduced the plasma aldosterone level and ameliorated mortality rate. This study is the first to demonstrate that a CYP11B2 inhibitor improved survival rates of heart failure induced by pressure‐overload in mice. The treatment of 0.06% compound 1 did not elevate plasma potassium level in this model, although further evaluation of hyperkalemia is needed. These results suggest that compound 1 can be developed as a promising oral CYP11B2 inhibitor for pharmaceutical applications. Compound 1 could also be a useful compound for clarifying the role of aldosterone in cardiac hypertrophy.


Journal of Pharmacology and Experimental Therapeutics | 2017

Sustained Activation of Guanylate Cyclase-A with TDT, a Natriuretic Peptide Derivative, Exhibits Cardiorenal Protection in Dahl Salt-Sensitive Hypertensive Rats

Shohei Oishi; Naoko Suzuki; Yuri Hasui; Tsuyoshi Homma; Masanori Obana; Takahiro Nagayama; Yasushi Fujio

Heart failure often presents with prognosis-relevant impaired renal function. To investigate whether the chronic activation of guanylate cyclase-A (GC-A) protects both heart and kidney, we examined the effects of TDT, a neprilysin (NEP)-resistant natriuretic peptide (NP) derivative, on cardiac and renal dysfunction in Dahl salt-sensitive hypertensive (DS) rats. Pretreatment with NEP or NEP inhibitor did not influence GC-A activation by TDT both in vitro and in vivo, resulting in a long-acting profile of TDT compared with native human atrial NP (hANP). The repeated administration of TDT to DS rats suppressed the progress of cardiac hypertrophy, systolic/diastolic dysfunction, and proteinuria in a dose-dependent manner. Compared with vehicle and hANP, salt diet–induced podocyte injury was reduced by TDT, as analyzed by urinary podocalyxin concentration, renal expression of nephrin mRNA, and glomerular expression of desmin protein. Since glomerular TRPC6 plays detrimental roles in podocyte homeostasis, we examined the renal expression of TRPC6 in DS rats and found that salt diet upregulated the expression of TRPC6. Importantly, TRPC6 induction was significantly decreased in TDT-treated rats, compared with vehicle and hANP. Consistently, in primary-culture podocytes from DS rats, TDT inhibited ATP-induced calcium influx, similar to TRPC inhibitor SKF96365. Finally, TDT-mediated protection of podocytes was abolished by protein kinase G inhibitor KT5823. In conclusion, TDT treatment attenuated heart and kidney dysfunction, accompanied by podocyte protection through inhibition of TRPC6. Thus, long-acting NPs could be a new avenue for treatment of heart failure.


Bioorganic & Medicinal Chemistry Letters | 2017

4-Anilino-pyrimidine, novel aldosterone synthase (CYP11B2) inhibitors bearing pyrimidine structures

Masaki Meguro; Satoru Miyauchi; Yukiko Kanao; Satoru Naito; Kanae Suzuki; Shin-ichi Inoue; Keisuke Yamada; Tsuyoshi Homma; Kiyoshi Chiba; Futoshi Nara; Shinji Furuzono

2,2,2-Trifluoro-1-{4-[(4-fluorophenyl)amino]pyrimidin-5-yl}-1-[1-(methylsulfonyl)piperidin-4-yl]ethanol 1 was identified as a novel potent aldosterone synthase inhibitor. Despite large species differences, compound 1 inhibits both human and rodent CYP11B2 in a nano-molar range.


Journal of Veterinary Medical Science | 2012

Spironolactone, but not Eplerenone, Impairs Glucose Tolerance in a Rat Model of Metabolic Syndrome

Tsuyoshi Homma; Michio Fujisawa; Kiyoshi Arai; Marie Ishii; Toshio Sada; Masahiro Ikeda


Archive | 2016

in a rat model of chronic cardiorenal syndrome injury contributes to the pathogenesis of progressive renal Activation of renal angiotensin type 1 receptor

Toshio Sada; Masahiro Ikeda; Tsuyoshi Homma; Hiroko Sonoda; Kenichi Manabe; Kiyoshi Arai; Makoto Mizuno


Archive | 2016

Pharmaceutical for prophylaxis or treatment of hypertension

Kiyoshi Arai; Tsuyoshi Homma; Makoto Mizuno

Collaboration


Dive into the Tsuyoshi Homma's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge