Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tsuyoshi Ikehara is active.

Publication


Featured researches published by Tsuyoshi Ikehara.


Molecular and Cellular Biology | 2001

p300 Forms a Stable, Template-Committed Complex with Chromatin: Role for the Bromodomain

E. Tory Manning; Tsuyoshi Ikehara; Takashi Ito; James T. Kadonaga; W. Lee Kraus

ABSTRACT The nature of the interaction of coactivator proteins with transcriptionally active promoters in chromatin is a fundamental question in transcriptional regulation by RNA polymerase II. In this study, we used a biochemical approach to examine the functional association of the coactivator p300 with chromatin templates. Using in vitro transcription template competition assays, we observed that p300 forms a stable, template-committed complex with chromatin during the transcription process. The template commitment is dependent on the time of incubation of p300 with the chromatin template and occurs independently of the presence of a transcriptional activator protein. In studies examining interactions between p300 and chromatin, we found that p300 binds directly to chromatin and that the binding requires the p300 bromodomain, a conserved 110-amino-acid sequence found in many chromatin-associated proteins. Furthermore, we observed that the isolated p300 bromodomain binds directly to histones, preferentially to histone H3. However, the isolated p300 bromodomain does not bind to nucleosomal histones under the same assay conditions, suggesting that free histones and nucleosomal histones are not equivalent as binding substrates. Collectively, our results suggest that the stable association of p300 with chromatin is mediated, at least in part, by the bromodomain and is critically important for p300 function. Furthermore, our results suggest a model for p300 function that involves distinct activator-dependent targeting and activator-independent chromatin binding activities.


Molecular and Cellular Biology | 2002

Dual Roles of p300 in Chromatin Assembly and Transcriptional Activation in Cooperation with Nucleosome Assembly Protein 1 In Vitro

Hiroshi Asahara; Sophie Tartare-Deckert; Takeya Nakagawa; Tsuyoshi Ikehara; Fumiko Hirose; Tony Hunter; Takashi Ito; Marc Montminy

ABSTRACT In a yeast two-hybrid screen to identify proteins that bind to the KIX domain of the coactivator p300, we obtained cDNAs encoding nucleosome assembly protein 1 (NAP-1), a 60-kDa histone H2A-H2B shuttling protein that promotes histone deposition. p300 associates preferentially with the H2A-H2B-bound form of NAP-1 rather than with the unbound form of NAP-1. Formation of NAP-1-p300 complexes was found to increase during S phase, suggesting a potential role for p300 in chromatin assembly. In micrococcal nuclease and supercoiling assays, addition of p300 promoted efficient chromatin assembly in vitro in conjunction with NAP-1 and ATP-utilizing chromatin assembly and remodeling factor; this effect was dependent in part on the intrinsic histone acetyltransferase activity of p300. Surprisingly, NAP-1 potently inhibited acetylation of core histones by p300, suggesting that efficient assembly requires acetylation of either NAP-1 or p300 itself. As p300 acted cooperatively with NAP-1 in stimulating transcription from a chromatin template in vitro, our results suggest a dual role of NAP-1-p300 complexes in promoting chromatin assembly and transcriptional activation.


Toxicon | 2008

A protein phosphatase 2A (PP2A) inhibition assay using a recombinant enzyme for rapid detection of microcystins.

Tsuyoshi Ikehara; Shihoko Imamura; Naomasa Oshiro; Satsuki Ikehara; Fukiko Shinjo; Takeshi Yasumoto

Worldwide blooms of toxic cyanobacteria (blue-green algae) commonly occur in freshwater, often in drinking water sources, necessitating routine monitoring of water quality. Microcystin-LR and related cyanobacterial toxins strongly inhibit protein phosphatase 2A (PP2A) and are therefore assayable by measuring the extent of PP2A inhibition. In this study, we evaluated the suitability of the catalytic subunit of recombinant PP2A (rPP2Ac) expressed with a baculovirus system for use in a microplate microcystin assay. Five microcystin analogs, microcystin-LR, -RR, -YR, -LF, and -LW, and nodularin strongly inhibited rPP2Ac activity with IC(50) values of 0.048, 0.072, 0.147, 0.096, 0.114, and 0.54 nM, respectively. Microcystin-LR in a water sample could be assayed from 0.005 to 5 ng/ml. The assay could detect the toxin at a far lower level than required by the World Health Organization for regulation of microcystin-LR or its equivalent (1 microg/L). Pretreatment or concentration of water samples with low toxin concentrations was not necessary. The microplate assay using rPP2Ac was more sensitive than an enzyme-linked immunosorbent assay (ELISA) method and a cytotoxicity assay. The genetically engineered rPP2Ac was more stable than a commercially available dimeric enzyme, producing accurate and reproducible results. Our results confirm that the rPP2Ac we prepared is an excellent tool for detecting and quantifying microcystins in water.


Toxins | 2010

PP2A Inhibition Assay Using Recombinant Enzyme for Rapid Detection of Okadaic Acid and Its Analogs in Shellfish

Tsuyoshi Ikehara; Shihoko Imamura; Atsushi Yoshino; Takeshi Yasumoto

Okadaic acid and its analogs (OAs) responsible for diarrhetic shellfish poisoning (DSP) strongly inhibit protein phosphatase 2A (PP2A) and thus are quantifiable by measuring the extent of the enzyme inhibition. In this study, we evaluated the suitability of the catalytic subunit of recombinant human PP2A (rhPP2Ac) for use in a microplate OA assay. OA, dinophysistoxin-1(DTX1), and hydrolyzate of 7-O-palmitoyl-OA strongly inhibited rhPP2Ac activity with IC50 values of 0.095, 0.104, and 0.135 nM, respectively. The limits of detection and quantitation for OA in the digestive gland of scallops and mussels were 0.0348 μg/g and 0.0611 μg/g respectively, and, when converted to the whole meat basis, are well below the regulation level proposed by EU (0.16 μg/g whole meat). A good correlation with LC-MS data was demonstrated, the correlation coefficient being 0.996 with the regression slope of 1.097.


Toxicon | 2009

The effect of structural variation in 21 microcystins on their inhibition of PP2A and the effect of replacing cys269 with glycine

Tsuyoshi Ikehara; Shihoko Imamura; Tomoharu Sano; Junichi Nakashima; Kyoko Kuniyoshi; Naomasa Oshiro; Masahiro Yoshimoto; Takeshi Yasumoto

Microcystins (MCs) are a group of cyclic heptapeptide hepatotoxins produced by Microcystis and several other genera of cyanobacteria. The representative MC, MC-LR, strongly inhibits protein phosphatase 2A (PP2A), while the inhibitory potencies of at least 60MC analogs characterized from bloom samples and cultured strains have not been fully elucidated. In this study, we determined the IC(50) values for 21MC analogs for inhibiting the recombinant PP2A catalytic subunit (rPP2Ac). Of the 21MC analogs, MC-LR was the strongest inhibitor of rPP2Ac. Comparison of the IC(50) values indicates that demethylation of the amino acids at positions 3 or 7 leads to a greater reduction in activity than the substitution of l-amino acids at positions 2 and 4. To obtain further insight into the MC-PP2A interaction, we substituted cysteine at position 269 in PP2Ac with glycine. The mutant PP2Ac (C269G) was comparable to the wild-type PP2Ac in the hydrolysis of p-NPP, but was more resistant to MCs as indicated by the greater IC(50) values. Our results indicate that cys269 in PP2Ac and N-methyldehydroalanine (Mdha) at position 7 in MCs play important roles in the enzyme-inhibitor interaction. We also determined the LC(50) values of the MCs for cytotoxicity assay. Our results indicate that there is a weak correlation between the cytotoxicity and PP2A inhibiting activities of the MCs. The MCs and rPP2Ac used in this study were of high purity and the IC(50) values were determined under the same experimental conditions, ensuring the quality of the data. The IC(50) values are of practical importance because they enable the precise conversion of the amounts of various MCs detected using instrumental methods to MC-LR equivalents.


International Immunopharmacology | 2012

Inhibitory effects of an ellagic acid glucoside, okicamelliaside, on antigen-mediated degranulation in rat basophilic leukemia RBL-2H3 cells and passive cutaneous anaphylaxis reaction in mice.

Megumi Kuba-Miyara; Kengo Agarie; Rina Sakima; Shihoko Imamura; Kazuyo Tsuha; Takeshi Yasumoto; Shinichi Gima; Goro Matsuzaki; Tsuyoshi Ikehara

Degranulation inhibitors in plants are widely used for prevention and treatment of immediate-type allergy. We previously isolated a new ellagic acid glucoside, okicamelliaside (OCS), from Camellia japonica leaves for use as a potent degranulation inhibitor. Crude extracts from leaves also suppressed allergic conjunctivitis in rats. In this study, we evaluated the in vivo effect of OCS using a pure sample and performed in vitro experiments to elucidate the mechanism underlying the extraordinary high potency of OCS and its aglycon. The IC(50) values for degranulation of rat basophilic leukemia cells (RBL-2H3) were 14 nM for OCS and 3 μM for aglycon, indicating that the two compounds were approximately 2 to 3 orders of magnitude more potent than the anti-allergic drugs ketotifen fumarate, DSCG, and tranilast (0.17, 3, and >0.3 mM, respectively). Antigen-induced calcium ion (Ca(2+)) elevation was significantly inhibited by OCS and aglycon at all concentrations tested (p<0.05). Upstream of the Ca(2+) elevation in the principle signaling pathway, phosphorylation of Syk (Tyr525/526) and PLCγ-1 (Tyr783 and Ser1248) were inhibited by OCS and aglycon. In DNA microarray-screening test, OCS inhibited expression of proinflammatory cytokines [interleukin (IL)-4 and IL-13], cytokine-producing signaling factors, and prostaglandin-endoperoxidase 2, indicating that OCS broadly inhibits allergic inflammation. During passive cutaneous anaphylaxis in mice, OCS significantly inhibited vascular hyperpermeability by two administration routes: a single intraperitoneal injection at 10 mg/kg and per os at 5 mg/kg for 7 days (p<0.05). These results suggest the potential for OCS to alleviate symptoms of immediate-type allergy.


Toxins | 2017

Biooxidation of Ciguatoxins Leads to Species-Specific Toxin Profiles

Tsuyoshi Ikehara; Kyoko Kuniyoshi; Naomasa Oshiro; Takeshi Yasumoto

Ciguatoxins (CTXs) contaminate fish worldwide and cause the foodborne illness ciguatera. In the Pacific, these toxins are produced by the dinoflagellate Gambierdiscus toxicus, which accumulates in fish through the food chain and undergoes oxidative modification, giving rise to numerous analogs. In this study, we examined the oxidation of CTXs in vitro with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis using reference toxins, and found that CTX4A, CTX4B, and CTX3C, which are produced by the alga, are oxidized to the analogs found in fish, namely CTX1B, 52-epi-54-deoxyCTX1B, 54-deoxyCTX1B, 2-hydroxyCTX3C, and 2,3-dihydroxyCTX3C. This oxidation was catalyzed by human CYP3A4, fish liver S9 fractions, and microsomal fractions prepared from representative ciguateric fishes (Lutjanus bohar, L. monostigumus, and Oplegnathus punctatus). In addition, fish liver S9 fractions prepared from non-ciguateric fishes (L. gibbus and L. fulviflamma) in Okinawa also converted CTX4A and CTX4B to CTX1B, 54-deoxyCTX1B, and 52-epi-54-deoxyCTX1B in vitro. This is the first study to demonstrate the enzymatic oxidation of these toxins, and provides insight into the mechanism underlying the development of species-specific toxin profiles and the fate of these toxins in humans and fish.


Toxicon | 2015

Different responses of primary normal human hepatocytes and human hepatoma cells toward cyanobacterial hepatotoxin microcystin-LR.

Tsuyoshi Ikehara; Junichi Nakashima; Shihoko Nakashima; Takeshi Yasumoto

Microcystins (MCs) are potent hepatotoxins produced by cyanobacteria in aquatic environments. MC-LR, a representative MC, strongly inhibits protein phosphatases 1 and 2A, leading to cell collapse in animal hepatocytes due to hyperphosphorylation of the cytoskeleton and apoptosis due to stimulation of the relevant systems. However, the molecular mechanisms and the metabolic pathways responsible for MC-LR toxicity are poorly understood. In the present study, we compared the cytotoxic effects of MC-LR in two cell lines: normal human hepatocytes (h-Nheps) and human hepatoma cell line HepG2. We also discussed the suitability of cellular assays for evaluating the toxicity of MCs. To obtain further insight into the molecular mechanism, the uptake, excretion, and intracellular distribution of MC-LR were analyzed using an antibody and assay kit targeting the catalytic subunit of protein phosphatase 2A (the PP2A assay kit). The responses toward MC-LR were distinctly different between the two cell lines. In HepG2 cells, MC-LR did not induce morphological change, did not reveal cytotoxicity, and accumulated to a lesser extent despite a slightly elevated expression of the MC transporter protein. MC-LR also did not alter the MC-binding potency of subcellular proteins. All these results indicate that HepG2 cells are inappropriate for the evaluation of MC-LR toxicity. The PP2A assay kits were useful not only for assessing PP2A-inhibitory potency, but also for determining the concentration of MCs in biological systems.


Biotechnology Reports | 2016

Efficient production of recombinant PP2A at a low temperature using a baculovirus expression system

Tsuyoshi Ikehara; Shihoko Nakashima; Junichi Nakashima; Tsubasa Kinoshita; Takeshi Yasumoto

Highlights • The recombinant human PP2A catalytic subunit (rhPP2Ac) was produced in the baculovirus expression system with High Five insect cells.• The expression at 19 °C can produce the rhPP2Ac with a higher activity and in a larger quantity than in the incubation conducted at 27 °C.• To examine the effects of the low temperature expression on other phosphatases, we expressed human PP2B and PP2C in High Five insect cells.• Optimizing the expression temperature in a baculovirus system is effective for producing a recombinant protein.


PLOS ONE | 2015

Enhancer of Acetyltransferase Chameau (EAChm) Is a Novel Transcriptional Co-Activator

Takeya Nakagawa; Tsuyoshi Ikehara; Masamichi Doiguchi; Yuko Imamura; Miki Higashi; Mitsuhiro Yoneda; Takashi Ito

Acetylation of nucleosomal histones by diverse histone acetyltransferases (HAT) plays pivotal roles in many cellular events. Discoveries of novel HATs and HAT related factors have provided new insights to understand the roles and mechanisms of histone acetylation. In this study, we identified prominent Histone H3 acetylation activity in vitro and purified its activity, showing that it is composed of the MYST acetyltransferase Chameau and Enhancer of the Acetyltransferase Chameau (EAChm) family. EAChm is a negatively charged acidic protein retaining aspartate and glutamate. Furthermore, we identified that Chameau and EAChm stimulate transcription in vitro together with purified general transcription factors. In addition, RNA-seq analysis of Chameu KD and EAChm KD S2 cells suggest that Chameau and EAChm regulate transcription of common genes in vivo. Our results suggest that EAChm regulates gene transcription in Drosophila embryos by enhancing Acetyltransferase Chameau activity.

Collaboration


Dive into the Tsuyoshi Ikehara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Naomasa Oshiro

Tokyo University of Marine Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Takashi Ito

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

W. Lee Kraus

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Goro Matsuzaki

University of the Ryukyus

View shared research outputs
Top Co-Authors

Avatar

Hiroshi Asahara

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge