Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tsuyoshi Maekawa is active.

Publication


Featured researches published by Tsuyoshi Maekawa.


Bioorganic & Medicinal Chemistry | 2012

A new class of non-thiazolidinedione, non-carboxylic-acid-based highly selective peroxisome proliferator-activated receptor (PPAR) γ agonists: design and synthesis of benzylpyrazole acylsulfonamides.

Kentaro Rikimaru; Takeshi Wakabayashi; Hidenori Abe; Hiroshi Imoto; Tsuyoshi Maekawa; Osamu Ujikawa; Katsuhito Murase; Takanori Matsuo; Mitsuharu Matsumoto; Chisako Nomura; Hiroko Tsuge; Naoto Arimura; Kazutoshi Kawakami; Junichi Sakamoto; Miyuki Funami; Clifford D. Mol; Gyorgy Snell; Kenneth A. Bragstad; Bi-Ching Sang; Douglas R. Dougan; Toshimasa Tanaka; Nozomi Katayama; Yoshiaki Horiguchi; Yu Momose

Herein, we describe the design, synthesis, and structure-activity relationships of novel benzylpyrazole acylsulfonamides as non-thiazolidinedione (TZD), non-carboxylic-acid-based peroxisome proliferator-activated receptor (PPAR) γ agonists. Docking model analysis of in-house weak agonist 2 bound to the reported PPARγ ligand binding domain suggested that modification of the carboxylic acid of 2 would help strengthen the interaction of 2 with the TZD pocket and afford non-carboxylic-acid-based agonists. In this study, we used an acylsulfonamide group as the ring-opening analog of TZD as an isosteric replacement of carboxylic acid moiety of 2; further, preliminary modification of the terminal alkyl chain on the sulfonyl group gave the lead compound 3c. Subsequent optimization of the resulting compound gave the potent agonists 25c, 30b, and 30c with high metabolic stability and significant antidiabetic activity. Further, we have described the difference in binding mode of the carboxylic-acid-based agonist 1 and acylsulfonamide 3d.


Bioorganic & Medicinal Chemistry | 2015

Optimization of a novel series of N-phenylindoline-5-sulfonamide-based acyl CoA:monoacylglycerol acyltransferase-2 inhibitors: Mitigation of CYP3A4 time-dependent inhibition and phototoxic liabilities

Kenjiro Sato; Hiroki Takahagi; Osamu Kubo; Kousuke Hidaka; Takeshi Yoshikawa; Masahiro Kamaura; Masanori Nakakariya; Nobuyuki Amano; Ryutaro Adachi; Toshiyuki Maki; Kazumi Take; Shiro Takekawa; Tomoyuki Kitazaki; Tsuyoshi Maekawa

Acyl CoA:monoacylglycerol acyltransferase-2 (MGAT2) has emerged as a potential peripheral target for the treatment of obesity and metabolic disorders. We previously identified a novel series of N-phenylindoline-5-sulfonamide derivatives exemplified by 2 as potent and orally bioavailable MGAT2 inhibitors. Despite its attractive potency, further assessment revealed that this compound exhibited time-dependent inhibition (TDI) of cytochrome P450 3A4 (CYP3A4). To remove the undesirable CYP3A4 TDI activity, structural modification was focused on the 2,4-difluoroaniline moiety on the basis of the assumption that this moiety would be involved in mechanism-based inhibition of CYP3A4 via oxidative metabolism. This led to the finding that the introduction of 4-chloro-2,6-difluoroaniline significantly improved CYP3A4 TDI risk. Further optimization resulted in the discovery of N-(4-chloro-2,6-difluorophenyl)-1-{5-[1-methyl-3-(trifluoromethyl)-1H-pyrazol-5-yl]pyrimidin-2-yl}-7-(2-oxopyrrolidin-1-yl)-2,3-dihydro-1H-indole-5-sulfonamide (27c) with potent MGAT2 inhibitory activity (IC50=7.8 nM) and excellent ADME-Tox profiles including metabolic stability, oral bioavailability, and CYP3A4 TDI. In a mouse oral fat tolerance test, compound 27c effectively and dose-dependently suppressed the elevation of plasma triacylglycerol levels after oral administration at doses of 1 and 3mg/kg. We also discuss mitigation of the phototoxic liability of biaryl derivatives on the basis of the HOMO-LUMO gap hypothesis during the course of optimization efforts.


Bioorganic & Medicinal Chemistry | 2016

Amine-free melanin-concentrating hormone receptor 1 antagonists: Novel 1-(1H-benzimidazol-6-yl)pyridin-2(1H)-one derivatives and design to avoid CYP3A4 time-dependent inhibition

Hideyuki Igawa; Masashi Takahashi; Mikio Shirasaki; Keiko Kakegawa; Asato Kina; Minoru Ikoma; Jumpei Aida; Tsuneo Yasuma; Shoki Okuda; Yayoi Kawata; Toshihiro Noguchi; Syunsuke Yamamoto; Yasushi Fujioka; Mrinalkanti Kundu; Uttam Khamrai; Masaharu Nakayama; Yasutaka Nagisa; Shizuo Kasai; Tsuyoshi Maekawa

Melanin-concentrating hormone (MCH) is an attractive target for antiobesity agents, and numerous drug discovery programs are dedicated to finding small-molecule MCH receptor 1 (MCHR1) antagonists. We recently reported novel pyridine-2(1H)-ones as aliphatic amine-free MCHR1 antagonists that structurally featured an imidazo[1,2-a]pyridine-based bicyclic motif. To investigate imidazopyridine variants with lower basicity and less potential to inhibit cytochrome P450 3A4 (CYP3A4), we designed pyridine-2(1H)-ones bearing various less basic bicyclic motifs. Among these, a lead compound 6a bearing a 1H-benzimidazole motif showed comparable binding affinity to MCHR1 to the corresponding imidazopyridine derivative 1. Optimization of 6a afforded a series of potent thiophene derivatives (6q-u); however, most of these were found to cause time-dependent inhibition (TDI) of CYP3A4. As bioactivation of thiophenes to form sulfoxide or epoxide species was considered to be a major cause of CYP3A4 TDI, we introduced electron withdrawing groups on the thiophene and found that a CF3 group on the ring or a Cl adjacent to the sulfur atom helped prevent CYP3A4 TDI. Consequently, 4-[(5-chlorothiophen-2-yl)methoxy]-1-(2-cyclopropyl-1-methyl-1H-benzimidazol-6-yl)pyridin-2(1H)-one (6s) was identified as a potent MCHR1 antagonist without the risk of CYP3A4 TDI, which exhibited a promising safety profile including low CYP3A4 inhibition and exerted significant antiobesity effects in diet-induced obese F344 rats.


Bioorganic & Medicinal Chemistry | 2017

Discovery of novel somatostatin receptor subtype 5 (SSTR5) antagonists: Pharmacological studies and design to improve pharmacokinetic profiles and human Ether-a-go-go-related gene (hERG) inhibition

Takeshi Yamasaki; Hideki Hirose; Tohru Yamashita; Nobuyuki Takakura; Sachie Morimoto; Takashi Nakahata; Asato Kina; Yoshihide Nakano; Yumiko Okano Tamura; Jun Sugama; Tomoyuki Odani; Yuji Shimizu; Shinji Iwasaki; Masanori Watanabe; Tsuyoshi Maekawa; Shizuo Kasai

Somatostatin (SST) is a peptide hormone comprising 14 or 28 amino acids that inhibits endocrine and exocrine secretion via five distinct G-protein-coupled receptors (SSTR1-5). SSTR5 has an important role in inhibiting the secretion of pancreatic and gastrointestinal hormones (e.g., insulin, GLP-1, PYY) through the binding of SSTs; hence, SSTR5 antagonists are expected to be novel anti-diabetic drugs. In the course of our lead generation program of SSTR5 antagonists, we have discovered a novel spiroazetidine derivative 3a. However, pharmacological evaluation of 3a revealed that it had to be administered at a high dose (100mg/kg) to show a persistent glucose-lowering effect in an oral glucose tolerance test (OGTT). We therefore initiated an optimization study based on 3a aimed at improving the antagonistic activity and mean residence time (MRT), resulting in the identification of 2-cyclopropyl-5-methoxybiphenyl derivative 3k. However, 3k did not show a sufficient persistent glucose-lowering effect in an OGTT; moreover, hERG inhibition was observed. Hence, further optimization study of the biphenyl moiety of compound 3k, focused on improving the pharmacokinetic (PK) profile and hERG inhibition, was conducted. Consequently, the introduction of a chlorine atom at the 6-position on the biphenyl moiety addressed a putative metabolic soft spot and increased the dihedral angle of the biphenyl moiety, leading to the discovery of 3p with an improved PK profile and hERG inhibition. Furthermore, 3p successfully exhibited a persistent glucose-lowering effect in an OGTT at a dose of 3mg/kg.


Bioorganic & Medicinal Chemistry | 2016

Amine-free melanin-concentrating hormone receptor 1 antagonists: Novel non-basic 1-(2H-indazole-5-yl)pyridin-2(1H)-one derivatives and mitigation of mutagenicity in Ames test.

Hideyuki Igawa; Masashi Takahashi; Minoru Ikoma; Hiromi Kaku; Keiko Kakegawa; Asato Kina; Jumpei Aida; Shoki Okuda; Yayoi Kawata; Toshihiro Noguchi; Natsu Hotta; Syunsuke Yamamoto; Masaharu Nakayama; Yasutaka Nagisa; Shizuo Kasai; Tsuyoshi Maekawa

To develop non-basic melanin-concentrating hormone receptor 1 (MCHR1) antagonists with a high probability of target selectivity and therapeutic window, we explored neutral bicyclic motifs that could replace the previously reported imidazo[1,2-a]pyridine or 1H-benzimidazole motif. The results indicated that the binding affinity of a chemically neutral 2H-indazole derivative 8a with MCHR1 (hMCHR1: IC50=35nM) was comparable to that of the imidazopyridine and benzimidazole derivatives (1 and 2, respectively) reported so far. However, 8a was positive in the Ames test using TA1537 in S9- condition. Based on a putative intercalation of 8a with DNA, we introduced a sterically-hindering cyclopropyl group on the indazole ring to decrease planarity, which led to the discovery of 1-(2-cyclopropyl-3-methyl-2H-indazol-5-yl)-4-{[5-(trifluoromethyl)thiophen-3-yl]methoxy}pyridin-2(1H)-one 8l without mutagenicity in TA1537. Compound 8l exerted significant antiobesity effects in diet-induced obese F344 rats and exhibited promising safety profile.


Journal of Medicinal Chemistry | 2017

Discovery of 3,5-Diphenyl-4-methyl-1,3-oxazolidin-2-ones as Novel, Potent, and Orally Available Δ-5 Desaturase (D5D) Inhibitors

Jun Fujimoto; Rei Okamoto; Naoyoshi Noguchi; Ryoma Hara; Shinichi Masada; Tetsuji Kawamoto; Hiroki Nagase; Yumiko Okano Tamura; Mitsuaki Imanishi; Shuichi Takagahara; Kazuki Kubo; Kimio Tohyama; Koichi Iida; Tomohiro Andou; Ikuo Miyahisa; Junji Matsui; Ryouta Hayashi; Tsuyoshi Maekawa; Nobuyuki Matsunaga

The discovery and optimization of Δ-5 desaturase (D5D) inhibitors are described. Investigation of the 1,3-oxazolidin-2-one scaffold was inspired by a pharmacophore model constructed from the common features of several hit compounds, resulting in the identification of 3,5-diphenyl-1,3-oxazolidin-2-one 5h as a novel lead showing potent in vitro activity. Subsequent optimization focused on the modification of two metabolic sites, which provided (4S,5S)-5i, a derivative with improved metabolic stability. Moreover, adding a substituent into the upper phenyl moiety further enhanced the intrinsic activity, which led to the discovery of 5-[(4S,5S)-5-(4fluorophenyl)-4-methyl-2-oxo-1,3-oxazolidin-3-yl]benzene-1,3-dicarbonitrile (4S,5S)-5n, endowed with excellent D5D binding affinity, cellular activity, and high oral bioavailability in a mouse. It exhibited robust in vivo hepatic arachidonic acid/dihomo-γ-linolenic acid ratio reduction (a target engagement marker) in an atherosclerosis mouse model. Finally, an asymmetric synthetic procedure for this compound was established.


Journal of Medicinal Chemistry | 2002

Novel 5-Substituted 2,4-Thiazolidinedione and 2,4-Oxazolidinedione Derivatives as Insulin Sensitizers with Antidiabetic Activities

Yu Momose; Tsuyoshi Maekawa; Tohru Yamano; Mitsuru Kawada; Hiroyuki Odaka; Hitoshi Ikeda; Takashi Sohda


Archive | 2000

5-MEMBERED N-HETEROCYCLIC COMPOUNDS WITH HYPOGLYCEMIC AND HYPOLIPIDEMIC ACTIVITY

Y U Momose; Tsuyoshi Maekawa; Hiroyuki Odaka; Hiroyuki Kimura


Archive | 2003

1,2-azole derivatives with hypoglycemic and hypolipidemic activity

Tsuyoshi Maekawa; Ryoma Hara; Hiroyuki Odaka; Hiroyuki Kimura; Hideya Mizufune; Kohji Fukatsu


Chemical & Pharmaceutical Bulletin | 2002

Novel 5-substituted-1H-tetrazole derivatives as potent glucose and lipid lowering agents.

Yu Momose; Tsuyoshi Maekawa; Hiroyuki Odaka; Hitoshi Ikeda; Takashi Sohda

Collaboration


Dive into the Tsuyoshi Maekawa's collaboration.

Top Co-Authors

Avatar

Hiroyuki Odaka

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Hiroyuki Kimura

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Yu Momose

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Hideyuki Igawa

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Shizuo Kasai

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Asato Kina

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Mitsuru Shiraishi

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jumpei Aida

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Keiko Kakegawa

Takeda Pharmaceutical Company

View shared research outputs
Researchain Logo
Decentralizing Knowledge