Tsuyoshi Minematsu
Astellas Pharma
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tsuyoshi Minematsu.
Drug Metabolism and Disposition | 2010
Tsuyoshi Minematsu; Megumi Iwai; Ken-ichi Umehara; Takashi Usui; Hidetaka Kamimura
1-(2-Methoxyethyl)-2-methyl-4,9-dioxo-3-(pyrazin-2-ylmethyl)-4,9-dihydro-1H-naphtho[2,3-d]imidazolium bromide (YM155 monobromide) is a novel small-molecule survivin suppressant that induces the down-regulation of survivin and exhibits potent antitumor activity in nude mice bearing human hormone refractory prostate carcinoma cell line PC-3. Although YM155, which has a cationic moiety in its structure, is influxed into its pharmacologically effective site (cancer cells) and one of its eliminating organs (hepatocytes) in a transporter-mediated manner, the mechanism seems to be different between the two cell types. The other eliminating organ is the kidney. In this study, the transport of [14C]YM155 was characterized by using human embryonic kidney 293 cells expressing organic cation transporter 1 (OCT1/SLC22A1), OCT2 (SLC22A2), and OCT3 (SLC22A3). YM155 inhibited the uptake of a typical substrate [3H]1-methyl-4-phenylpyridinium via OCT1, OCT2, and OCT3 with IC50 values of 23.8, 15.9, and 108 μM, respectively. The time- and saturable concentration-dependent uptake of [14C]YM155 was observed in cells expressing OCT1 and OCT2 with Km values of 22.1 and 2.67 μM, respectively, but not in cells expressing OCT3. By taking into consideration the tissue distribution and localization of each transporter, these results suggest that, in humans, YM155 is taken up from the blood into hepatocytes and proximal tubular cells via OCT1 and OCT2, respectively. The comparison of the IC50 values of OCT inhibitors and Km values for the uptake of YM155 into cells expressing OCTs with those into cancer cell lines indicated that transporter(s) other than OCT1 and OCT2 are involved in the uptake of YM155 into cancer cell lines.
Drug Metabolism and Disposition | 2011
Megumi Iwai; Tsuyoshi Minematsu; Qun Li; Takafumi Iwatsubo; Takashi Usui
1-(2-Methoxyethyl)-2-methyl-4,9-dioxo-3-(pyrazin-2-ylmethyl)-4,9-dihydro-1H-naphtho[2,3-d]imidazolium bromide (YM155 monobromide), a novel small molecule that downregulates survivin and exhibits potent antitumor activity, is hydrophilic and cationic. Although previous studies have shown that influx transporters play important roles in the uptake of YM155 into hepatocytes and possibly into cancer cells, efflux transporters have yet to be investigated. In this study, we assessed the interaction of YM155 with P-glycoprotein [multidrug resistance 1 (MDR1)/ATP-binding cassette B1] using two kinds of transcellular transport systems: Caco-2 and MDR1-expressing LLC-PK1 cells (LLC-MDR1). We also used a newly established LLC-OCT1/MDR1 cell line, which expresses basal YM155 uptake transporter organic cation transporter1 (OCT1) and apical MDR1. Direct interaction between YM155 and MDR1 and other efflux transporters was evaluated using transporter-expressing membrane vesicles. A bidirectional transporter assay using Caco-2 and LLC-MDR1 cells showed low permeability and no vectorial transport of YM155, suggesting that YM155 is not a substrate of MDR1. However, vectorial transport across LLC-OCT1/MDR1 cells was identified, which was inhibited by the MDR1 inhibitor cyclosporine A, clearly indicating that YM155 is in fact a substrate of MDR1. Insufficient expression of basal uptake transporter of YM155 in Caco-2 and LLC-MDR1 might have confounded conclusions regarding YM155 and MDR1. Using the transporter-expressing vesicles, MDR1-mediated transport was most significantly involved in YM155 transport among the efflux transporters examined. In conclusion, these findings suggest that YM155 is a substrate of MDR1, and that MDR1 may play an important role in the pharmacokinetics of YM155. Transcellular assays lacking basal uptake transporters may be inaccurate in the assessment of hydrophilic compounds that have poor membrane permeability by passive diffusion.
Drug Metabolism and Disposition | 2009
Tsuyoshi Minematsu; Megumi Iwai; Kenji Sugimoto; Nobuaki Shirai; Takahito Nakahara; Takashi Usui; Hidetaka Kamimura
1-(2-Methoxyethyl)-2-methyl-4,9-dioxo-3-(pyrazin-2-ylmethyl)-4,9-dihydro-1H-naphtho[2,3-d]imidazolium bromide (YM155 monobromide) is a novel small-molecule survivin suppressant that induces the down-regulation of survivin and exhibits potent antitumor activity in nude mice bearing the human hormone refractory prostate carcinoma cell line PC-3. In this study, radioluminographic determination of the in vivo distribution of radioactivity after administration of [14C]YM155 to PC-3-xenografted nude mice revealed a relatively high level of radioactivity in the PC-3 xenograft. Therefore, the uptake of [14C]YM155 was further characterized in vitro using PC-3, lung cancer (Calu-6 and NCI-H358), malignant melanoma (A375 and SK-MEL-5), and non-Hodgkins lymphoma (RL and Ramos) cell lines. The uptake of [14C]YM155 in these cell lines was dependent on incubation time, temperature, and drug concentration. The Michaelis-Menten constant values were similar among the seven cell lines (0.189–0.367 μM). The effects of various compounds on the uptake of [14C]YM155 were tested in PC-3, Calu-6, A375, RL, and Ramos cell lines. Of the compounds tested, the cationic transporter substrates/inhibitors (tetraethylammonium, 1-methyl-4-phenylpyridium, cimetidine, prazosin, corticosterone, verapamil, amantadine, procainamide, and N-methylnicotinamide) inhibited the uptake of [14C]YM155 to a similar extent among the five cell lines. The half-maximal inhibitory concentration values (IC50) of several compounds for the uptake of [14C]YM155 into PC-3 differed from those reported in the literature for human organic cation transporter 1 (OCT1/SLC22A1), OCT2 (SLC22A2), and OCT3 (SLC22A3). To summarize, YM155 was taken up into cancer cells in a carrier-mediated manner and with a similar affinity among all the cancer cell lines tested. An influx transporter(s) may contribute to this process.
Drug Metabolism and Disposition | 2009
Megumi Iwai; Tsuyoshi Minematsu; Shinichi Narikawa; Takashi Usui; Hidetaka Kamimura
1-(2-Methoxyethyl)-2-methyl-4,9-dioxo-3-(pyrazin-2-ylmethyl)-4,9-dihydro-1H-naphtho[2,3-d]imidazolium bromide (YM155 monobromide), which is a hydrophilic and cationic compound, exhibits antitumor activity in experimental human hormone refractory prostate carcinoma models. Urinary excretion was 18.3 to 28.6% of the dose in the clinical phase I study, and nonrenal elimination may be explained by the biliary excretion of YM155 in its unchanged form. Because the penetration through the sinusoidal membrane of the hepatocytes is the first step and an important part of biliary excretion, we evaluated the uptake of [14C]YM155 into human cryopreserved hepatocytes. YM155 was taken up into hepatocytes in a temperature- and concentration-dependent manner. The saturable uptake component was much higher than the nonsaturable passive diffusion component. In vitro hepatic uptake clearance was consistent with the in vivo hepatic intrinsic clearance calculated using clinical study data. Hepatic uptake of YM155 was inhibited by organic cation transporter (OCT) inhibitors, and the IC50 values for YM155 uptake were comparable to those reported for human OCT1-mediated transport. The interaction of YM155 with candidate transporter, OCT1, was also characterized using S2 cells stably expressing human OCT1 (OCT1-S2) cells. In OCT1-expressing S2 cells, YM155 inhibited the OCT1-mediated uptake of a typical OCT1 substrate, [14C]tetraethylammonium. In addition, YM155 was taken up into OCT1-S2 cells These results indicated that OCT1 was the predominant transporter for the hepatic uptake of YM155, and the transporter-mediated uptake clearance observed in vitro may account for the in vivo intrinsic hepatic clearance.
Drug Metabolism and Disposition | 2008
Tsuyoshi Minematsu; Tadashi Hashimoto; Toshiko Aoki; Takashi Usui; Hidetaka Kamimura
Zonampanel monohydrate ([2,3-dioxo-7-(1H-imidazol-1-yl)-6-nitro-1,2,3,4-tetrahydro-1-quinoxalinyl] acetic acid monohydrate, YM872) is a novel α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor antagonist. In humans, almost all administered zonampanel is excreted in the urine unchanged. Furthermore, zonampanel is transported by human organic anion transporter (OAT) 1, and OAT3 but not by OAT2, suggesting the contribution of OATs to renal excretion. In rats also, zonampanel is predominantly eliminated via urine but partly also via bile as the unchanged form. In this study, the molecular mechanism of the excretion of zonampanel was elucidated using cells expressing rat Oat1, Oat2, and Oat3. Furthermore, zonampanel (15 mg/kg) was given i.v. to rats with or without probenecid (50 mg/kg) or cimetidine (40 mg/kg), and pharmacokinetic parameters were compared. Zonampanel inhibited the uptake of typical substrates by Oat1, Oat2, and Oat3 with inhibition constant (Ki) values of 7.02 to 10.4 μM. A time- and saturable concentration-dependent increase in [14C]zonampanel uptake was observed in these cells [Michaelis-Menten constant (Km) values: 13.4 to 53.6 μM]. Probenecid and cimetidine inhibited [14C]zonampanel uptake by Oats. In in vivo experiments, probenecid and cimetidine decreased intrinsic clearance for both the renal secretion and biliary excretion of zonampanel. Considering the tissue distribution and localization of each transporter, these results suggest that in rats zonampanel is taken up from the blood into proximal tubular cells via Oat1 and Oat3 and, unlike the case in humans, also into hepatocytes via Oat2 and Oat3. The interspecies differences in the excretion of zonampanel between rats and humans may thus be explained by those in the substrate selectivity and tissue distribution of OATs.
Biopharmaceutics & Drug Disposition | 2012
Tsuyoshi Minematsu; Takuya Sonoda; Tadashi Hashimoto; Megumi Iwai; Todd Oppeneer; Laurie Felder; Nobuaki Shirai; Aiji Miyashita; Takashi Usui
YM155 monobromide is a novel small‐molecule survivin suppressant. The pharmacokinetics, distribution and excretion of YM155/[14C]YM155 were investigated using males and pregnant or lactating female rats after a single intravenous bolus administration. For the 0.1, 0.3 and 1 mg/kg YM155 doses given to male rats, increases in area under the plasma concentration–time curves were approximately proportional to the increase in the dose level. After administering [14C]YM155, radioactivity concentrations in the kidney and liver were highest among the tissues in both male and pregnant rats: e.g. 14.8‐ and 5.24‐fold, respectively, and higher than in plasma at 0.1 h after dosing to male rats. The YM155 concentrations in the brain were lowest: 25‐fold lower than in plasma. The transfer of radioactivity into fetuses was low (about 2‐fold lower than in plasma). In lactating rats, the radioactivity was transferred into milk at a level 8‐ to 21‐fold higher than for plasma. Radioactivity was primarily excreted in feces (64.0%) and urine (35.2%). The fecal excretion was considered to have occurred mainly by biliary excretion and partly by secretion across the gastrointestinal membrane from the blood to the lumen. Copyright
Biomedical Chromatography | 2008
Tsuyoshi Minematsu; Laurie Felder; Todd Oppeneer; Masashi Sakazume; Keishi Oikawa; Tadashi Hashimoto; Takashi Usui; Hidetaka Kamimura
This paper describes a sensitive and selective liquid chromatography with tandem mass spectrometry (LC-MS/MS) method for determination of the novel survivin suppressant YM155, 1-(2-methoxyethyl)-2-methyl-4,9-dioxo-3-(pyrazin-2-ylmethyl)-4,9-dihydro-1H-naphtho[2,3-d]imidazolium, which is developed for the treatment of solid tumors. This method uses a liquid-liquid extraction from 0.25 mL of dog plasma. LC separation was carried out on a Genesis Silica column (50 mm x 3.0 mm i.d.) at a flow-rate of 0.5 mL/min. Compounds were eluted using a mobile phase of 5 mm ammonium acetate and 0.1% formic acid in water-0.1% formic acid in acetonitrile, 17:83 (v/v). MS/MS detection was carried out with an MDS-Sciex API3000 triple quadrupole mass spectrometer in positive electrospray ionization mode. The standard curve was linear from 0.05 to 50 ng/mL (r > or = 0.9968). The lower limit of quantitation was 0.05 ng/mL. Good intra- and inter-day assay precision (within 7.4% RSD) and accuracy (within +/-12.3%) were obtained. The extraction recovery was 66.2%. The method was successfully applied to preclinical pharmacokinetic studies in dogs.
Biopharmaceutics & Drug Disposition | 2011
Hisakazu Ohtani; Zoe Barter; Tsuyoshi Minematsu; Masatoshi Makuuchi; Yasufumi Sawada; Amin Rostami-Hodjegan
The objectives were to investigate the ability of population‐based in vitro–in vivo extrapolation (IVIVE) to reproduce the influence of haematocrit on the clearance of tacrolimus, observed previously, and to assess the power of clinical studies to detect the effects of covariates on the clearance of tacrolimus.
Drug Metabolism and Disposition | 2009
Tsuyoshi Minematsu; Jennifer Lee; Jiuhong Zha; Selina Moy; Donna Kowalski; Katsuyuki Hori; Koji Ishibashi; Takashi Usui; Hidetaka Kamimura
We investigated the inhibitory effects of (1R,9S,12S,13R,14S,17R,18E,21S,23S,24R,25S,27R)-1, 14-dihydroxy-12-(E)-2-[(1R,3R,4R)-4-hydroxy-3-methoxycyclohexyl]-1-methylvinyl-23,25-dimethoxy-13,19,21,27-tetramethyl-17-(2-oxopropyl)-11,28-dioxa-4-azatricyclo [22.3.1.04.9]octacos-18-ene-2,3,10,16-tetrone (FK1706), a novel nonimmunosuppressive immunophilin ligand, on CYP3A4/5 in in vitro and in vivo settings. First, the inhibitory effects of FK1706 (preincubation dependence, inactivation rate estimation, and reversibility) were tested using human liver microsomes. Second, the effect of repeated oral doses of FK1706 (60 mg q.d. for 14 days) on the pharmacokinetics of midazolam (single oral 2-mg dose) was tested in healthy volunteers. Finally, pharmacokinetic modeling and simulation were performed. In vitro experiments showed that FK1706 inhibited CYP3A4/5 in a time-dependent and irreversible manner. The in vitro maximum inactivation rate constant (kinact) and concentration of inhibitor that gave half-maximal kinact (KI) were estimated to be 10.1 h−1 and 2050 ng/ml, respectively. In the clinical study, FK1706 produced a 2-fold increase in the area under the time-concentration curve (AUC) of midazolam. A pharmacokinetic model developed for this study, which described the time course of concentrations of both FK1706 and midazolam and incorporated CYP3A4/5 inactivation in the liver and intestine, successfully predicted the change in the pharmacokinetics of midazolam using in vitro kinact and KI values (1.66- to 2.81-fold increases in AUC predicted) and estimated the in vivo inactivation rate to be 0.00404 to 0.0318 h−1. ml/ng. In conclusion, FK1706 weakly or moderately inhibited the activity of CYP3A4/5 in vitro and vivo at the tested dose. The model developed here would be helpful in predicting drug-drug interactions and in the design of dose regimens that avoid drug-drug interactions.
Xenobiotica | 2005
Tsuyoshi Minematsu; K.-Y. Sohda; Tadashi Hashimoto; H. Imai; Takashi Usui; Hidetaka Kamimura
This study determined the pharmacokinetics, metabolism and excretion of an α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor antagonist zonampanel monohydrate (YM872) after intravenous infusion of [14C]YM872 at 1 mg kg−1 h−1 for 2 h to four healthy male volunteers. Mean pharmacokinetic parameters of unchanged YM872 were 0.78 h for terminal half-life, 25.9 l h−1 for total clearance, 22.9 l h−1 for renal clearance, and 15.6 l for volume of distribution at steady-state. Urinary excretion of radioactivity accounted for 94.9% of the dose, and faecal excretion for only 0.5% of the dose. Measurement of YM872 concentrations by a high-performance liquid chromatography (HPLC)-ultraviolet method and radiometric HPLC metabolite profiling revealed that almost all of [14C]YM872 was excreted unchanged in the urine and that unchanged [14C]YM872 was the major circulating [14C] component in the plasma. Two minor metabolites, H1 and H2, detected in the urine and identified as the same chemical structures as those of the rat urinary metabolites, have a hydroxyamino group and an amino group, respectively, which were probably formed by reduction of the nitro group of YM872. These results show that virtually all of the administered YM872 remains unchanged, with urinary excretion representing the major elimination pathway. The high renal clearance implies tubular secretion of this drug.