Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tsuyoshi Urushida is active.

Publication


Featured researches published by Tsuyoshi Urushida.


American Journal of Physiology-heart and Circulatory Physiology | 2009

Transient opening of mitochondrial permeability transition pore by reactive oxygen species protects myocardium from ischemia-reperfusion injury

Masao Saotome; Hideki Katoh; Yasuhiro Yaguchi; Takamitsu Tanaka; Tsuyoshi Urushida; Hiroshi Satoh; Hideharu Hayashi

Reactive oxygen species (ROS) production during ischemia-reperfusion (I/R) is thought to be a critical factor for myocardial injury. However, a small amount of ROS during the ischemic preconditioning (IPC) may provide a signal for cardioprotection. We have previously reported that the repetitive pretreatment of a small amount of ROS [hydrogen peroxide (H(2)O(2)), 2 microM] mimicked the IPC-induced cardioprotection in the Langendorff-perfused rat hearts. We further investigated the mechanisms of the ROS-induced cardioprotection against I/R injury and tested the hypothesis whether it could mediate the mitochondrial permeability transition pore (mPTP) opening. The Langendorff-perfused rat hearts were subjected to 35 min ischemia and 40 min reperfusion, and the pretreatment of H(2)O(2) (2 microM) significantly improved the postischemic recoveries in left ventricular developed pressure, intracellular phosphocreatine, and ATP levels. A specific mPTP inhibitor cyclosporin A (CsA; 0.2 microM) canceled these H(2)O(2)-induced effects. In isolated permeabilized myocytes, H(2)O(2) (1 microM) accelerated the calcein leakage from mitochondria in a CsA-sensitive manner, indicating the opening of mPTP by H(2)O(2). However, H(2)O(2) did not depolarize mitochondrial membrane potential (DeltaPsi(m)) even in the presence of oligomycin (F(1)/F(0) ATPase inhibitor; 1 microM) and decreased mitochondrial Ca(2+) concentration ([Ca(2+)](m)) by accelerating the mitochondrial Ca(2+) extrusion via an mPTP. We conclude that the transient mPTP opening could be involved in the H(2)O(2)-induced cardioprotection against reperfusion injury, and the reduction of [Ca(2+)](m) without the change in DeltaPsi(m) might be a possible mechanism for the protection.


Journal of Molecular and Cellular Cardiology | 2009

Local control of mitochondrial membrane potential, permeability transition pore and reactive oxygen species by calcium and calmodulin in rat ventricular myocytes

Keiichi Odagiri; Hideki Katoh; Hirotaka Kawashima; Takamitsu Tanaka; Hayato Ohtani; Masao Saotome; Tsuyoshi Urushida; Hiroshi Satoh; Hideharu Hayashi

Calmodulin (CaM) and Ca(2+)/CaM-dependent protein kinase II (CaMKII) play important roles in the development of heart failure. In this study, we evaluated the effects of CaM on mitochondrial membrane potential (DeltaPsi(m)), permeability transition pore (mPTP) and the production of reactive oxygen species (ROS) in permeabilized myocytes; our findings are as follows. (1) CaM depolarized DeltaPsi(m) dose-dependently, but this was prevented by an inhibitor of CaM (W-7) or CaMKII (autocamtide 2-related inhibitory peptide (AIP)). (2) CaM accelerated calcein leakage from mitochondria, indicating the opening of mPTP, however this was prevented by AIP. (3) Cyclosporin A (an inhibitor of the mPTP) inhibited both CaM-induced DeltaPsi(m) depolarization and calcein leakage. (4) CaM increased mitochondrial ROS, which was related to DeltaPsi(m) depolarization and the opening of mPTP. (5) Chelating of cytosolic Ca(2+) by BAPTA, the depletion of SR Ca(2+) by thapsigargin (an inhibitor of SERCA) and the inhibition of mitochondrial Ca(2+) uniporter by Ru360 attenuated the effects of CaM on mitochondrial function. (6) CaM accelerated Ca(2+) extrusion from mitochondria. We conclude that CaM/CaMKII depolarized DeltaPsi(m) and opened mPTP by increasing ROS production, and these effects were strictly regulated by the local increase in cytosolic Ca(2+) concentration, initiated by Ca(2+) releases from the SR. In addition, CaM was involved in the regulation of mitochondrial Ca(2+) homeostasis.


Journal of Cardiology | 2008

The usefulness of delayed enhancement magnetic resonance imaging for diagnosis and evaluation of cardiac function in patients with cardiac sarcoidosis

Fumitaka Matoh; Hiroshi Satoh; Katsunori Shiraki; Keiichi Odagiri; Takeji Saitoh; Tsuyoshi Urushida; Hideki Katoh; Yasuo Takehara; Harumi Sakahara; Hideharu Hayashi

OBJECTIVES Cardiac involvement is an important prognostic factor in patients with sarcoidosis. We evaluated the usefulness of delayed enhancement MRI (DE-MRI) for diagnosing cardiac sarcoidosis by comparing with nuclear imaging and studying the correlation between DE area and left ventricular (LV) function. METHODS Twelve patients (male:female 3:9) diagnosed as having sarcoidosis underwent Gd-MRI, myocardial perfusion SPECT (Tl-201, Tc-99m sestamibi), Ga-67 scintigraphy, and/or F-18 FDG-PET. RESULTS DE was observed in 5 patients, and was positive in 39 (39%) of 100 LV segments. The corresponding perfusion defects in myocardial perfusion SPECT were undetectable in 14 (36%) segments. DE distributed mainly in mid- to epi-myocardium, and the lack of perfusion defects in myocardial perfusion SPECT was more prominent in less transmural DE segments. Two patients with diffuse DE and 1 case with focal DE exhibited positive cardiac uptake in Ga-67 scintigraphy, and 2 other cases with focal DE showed cardiac uptake in F-18 FDG-PET. In 7 patients without DE, there were no significant findings in nuclear imaging. Both LV end-diastolic and end-systolic volume were positively and LV ejection fraction was negatively correlated with the extent of DE area. Four patients treated with corticosteroid showed improvement in nuclear imaging and slight decreases in DE area but no recovery in LV function. CONCLUSIONS DE-MRI is useful to diagnose the cardiac involvement of sarcoidosis and to evaluate cardiac function. It is likely that the distribution of DE in mid- to epi-myocardium is the characteristic of cardiac sarcoidosis, and the larger DE area may be correlated with poor LV function.


World Journal of Cardiology | 2014

Distribution of late gadolinium enhancement in various types of cardiomyopathies: Significance in differential diagnosis, clinical features and prognosis

Hiroshi Satoh; Makoto Sano; Kenichiro Suwa; Takeji Saitoh; Mamoru Nobuhara; Masao Saotome; Tsuyoshi Urushida; Hideki Katoh; Hideharu Hayashi

The recent development of cardiac magnetic resonance (CMR) techniques has allowed detailed analyses of cardiac function and tissue characterization with high spatial resolution. We review characteristic CMR features in ischemic and non-ischemic cardiomyopathies (ICM and NICM), especially in terms of the location and distribution of late gadolinium enhancement (LGE). CMR in ICM shows segmental wall motion abnormalities or wall thinning in a particular coronary arterial territory, and the subendocardial or transmural LGE. LGE in NICM generally does not correspond to any particular coronary artery distribution and is located mostly in the mid-wall to subepicardial layer. The analysis of LGE distribution is valuable to differentiate NICM with diffusely impaired systolic function, including dilated cardiomyopathy, end-stage hypertrophic cardiomyopathy (HCM), cardiac sarcoidosis, and myocarditis, and those with diffuse left ventricular (LV) hypertrophy including HCM, cardiac amyloidosis and Anderson-Fabry disease. A transient low signal intensity LGE in regions of severe LV dysfunction is a particular feature of stress cardiomyopathy. In arrhythmogenic right ventricular cardiomyopathy/dysplasia, an enhancement of right ventricular (RV) wall with functional and morphological changes of RV becomes apparent. Finally, the analyses of LGE distribution have potentials to predict cardiac outcomes and response to treatments.


Experimental Cell Research | 2014

Roles of mitochondrial fragmentation and reactive oxygen species in mitochondrial dysfunction and myocardial insulin resistance

Tomoyuki Watanabe; Masao Saotome; Mamoru Nobuhara; Atsushi Sakamoto; Tsuyoshi Urushida; Hideki Katoh; Hiroshi Satoh; Makoto Funaki; Hideharu Hayashi

PURPOSE Evidence suggests an association between aberrant mitochondrial dynamics and cardiac diseases. Because myocardial metabolic deficiency caused by insulin resistance plays a crucial role in heart disease, we investigated the role of dynamin-related protein-1 (DRP1; a mitochondrial fission protein) in the pathogenesis of myocardial insulin resistance. METHODS AND RESULTS DRP1-expressing H9c2 myocytes, which had fragmented mitochondria with mitochondrial membrane potential (ΔΨm) depolarization, exhibited attenuated insulin signaling and 2-deoxy-d-glucose (2-DG) uptake, indicating insulin resistance. Treatment of the DRP1-expressing myocytes with Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachloride (TMPyP) significantly improved insulin resistance and mitochondrial dysfunction. When myocytes were exposed to hydrogen peroxide (H2O2), they increased DRP1 expression and mitochondrial fragmentation, resulting in ΔΨm depolarization and insulin resistance. When DRP1 was suppressed by siRNA, H2O2-induced mitochondrial dysfunction and insulin resistance were restored. Our results suggest that a mutual enhancement between DRP1 and reactive oxygen species could induce mitochondrial dysfunction and myocardial insulin resistance. In palmitate-induced insulin-resistant myocytes, neither DRP1-suppression nor TMPyP restored the ΔΨm depolarization and impaired 2-DG uptake, however they improved insulin signaling. CONCLUSIONS A mutual enhancement between DRP1 and ROS could promote mitochondrial dysfunction and inhibition of insulin signal transduction. However, other mechanisms, including lipid metabolite-induced mitochondrial dysfunction, may be involved in palmitate-induced insulin resistance.


Nitric Oxide | 2012

Effects of nitric oxide on mitochondrial permeability transition pore and thiol-mediated responses in cardiac myocytes.

Hayato Ohtani; Hideki Katoh; Takamitsu Tanaka; Masao Saotome; Tsuyoshi Urushida; Hiroshi Satoh; Hideharu Hayashi

Nitric oxide (NO) alters the opening of mitochondrial permeability transition pore (mPTP). However, the signaling pathways of NO on mPTP remain elusive. We aimed to clarify the contribution of thiol-mediated responses to the effects of NO on mPTP in permeabilized myocytes. We found that (1) a high concentration of spermine NONOate (an NO donor; 500 μM) opened mPTP and depolarized ΔΨ(m). (2) A low concentration of NONOate (5 μM) prevented atractyloside (an mPTP opener)-induced mPTP opening. (3) Mn(III) tetrakis (4-benzoic acid) porphyrin (Mn-TBAP, ONOO(-) scavenger) attenuated the effect of high-concentration NONOate on mPTP opening, but did not inhibited the preventive effects of low-concentration NONOate. (4) When the interaction of NO with thiol was inhibited by N-ethylmaleimide, the opening (by high-concentration NONOate) and preventive effects (by low-concentration NONOate) of NONOate on mPTP were blocked. (5) Dithiothreitol (an inhibitor of disulfide bonds formation) prevented high-concentration NONOate-induced mPTP opening. (6) Ascorbic acid (an inhibitor of S-nitrosylation) prevented the preventive effects of low-concentration NONOate on mPTP. We conclude that opening of mPTP by high-concentration NO is related to disulfide bonds formation and oxidizing effects of ONOO(-). In contrast, the inhibitory effect of physiological concentrations of NO on mPTP is related to S-nitrosylation.


Canadian Journal of Physiology and Pharmacology | 2007

Non-genomic effects of aldosterone on intracellular ion regulation and cell volume in rat ventricular myocytes.

Saori Matsui; Hiroshi Satoh; Hirotaka Kawashima; Shiro Nagasaka; Chen Fung NiuC.F. Niu; Tsuyoshi Urushida; Hideki Katoh; Yasuhide Watanabe; Hideharu Hayashi

Aldosterone has non-genomic effects that express within minutes and modulate intracellular ion milieu and cellular function. However, it is still undefined whether aldosterone actually alters intracellular ion concentrations or cellular contractility. To clarify the non-genomic effects of aldosterone, we measured [Na+]i, Ca2+ transient (CaT), and cell volume in dye-loaded rat ventricular myocytes, and we also evaluated myocardial contractility. We found the following: (i) aldosterone increased [Na+]i at the concentrations of 100 nmol/L to 10 micromol/L; (ii) aldosterone (up to 10 micromol/L) did not alter CaT and cell shortening in isolated myocytes, developed tension in papillary muscles, or left ventricular developed pressure in Langendorff-perfused hearts; (iii) aldosterone (100 nmol/L) increased the cell volume from 47.5 +/- 3.6 pL to 49.8 +/- 3.7 pL (n=8, p<0.05); (iv) both the increases in [Na+]i and cell volume were blocked by a Na+-K+-2Cl- co-transporter (NKCCl) inhibitor, bumetanide, or by a Na+/H+ exchange (NHE) inhibitor, 5-(N-ethyl-N-isopropyl) amiloride; and (v) spironolactone by itself increased in [Na+]i and cell volume. In conclusion, aldosterone rapidly increased [Na+]i and cell volume via NKCC1 and NHE, whereas there were no changes in CaT or myocardial contractility. Hence the non-genomic effects of aldosterone may be related to cell swelling rather than the increase in contractility.


Molecular and Cellular Biochemistry | 2003

Importance of Ca2+ influx by Na+/Ca2+ exchange under normal and sodium-loaded conditions in mammalian ventricles

Hiroshi Satoh; Masaaki Mukai; Tsuyoshi Urushida; Hideki Katoh; Hajime Terada; Hideharu Hayashi

Na+/Ca2+ exchange (NCX) is a major Ca2+ extrusion system in cardiac myocytes, but can also mediate Ca2+ influx and trigger sarcoplasmic reticulum Ca2+ release. Under conditions such as digitalis toxicity or ischemia/reperfusion, increased [Na+]i may lead to a rise in [Ca2+]i through NCX, causing Ca2+ overload and triggered arrhythmias. Here we used an agent which selectively blocks Ca2+ influx by NCX, KB-R7943 (KBR), and assessed twitch contractions and Ca2+ transients in rat and guinea pig ventricular myocytes loaded with indo-1. KBR (5 μM) did not alter control steady-state twitch contractions or Ca2+ transients at 0.5 Hz in rat, but significantly decreased them in guinea pig myocytes. When cells were Na+-loaded by perfusion of strophanthidin (50 μM), the addition of KBR reduced diastolic [Ca2+]i and abolished spontaneous Ca2+ oscillations. In guinea pig papillary muscles exposed to substrate-free hypoxic medium for 60 min, KBR (10 μM applied 10 min before and during reoxygenation) reduced both the incidence and duration of reoxygenation-induced arrhythmias. KBR also enhanced the recovery of developed tension after reoxygenation. It is concluded that (1) the importance of Ca2+ influx via NCX for normal excitation-contraction coupling is species-dependent, and (2) Ca2+ influx via NCX may be critical in causing myocardial Ca2+ overload and triggered activities induced by cardiac glycoside or reoxygenation.


Cardiovascular Research | 2009

Extracellular acidosis suppresses endothelial function by inhibiting store-operated Ca2+ entry via non-selective cation channels

Masayoshi Asai; Kazuhiko Takeuchi; Masao Saotome; Tsuyoshi Urushida; Hideki Katoh; Hiroshi Satoh; Hideharu Hayashi; Hiroshi Watanabe

AIMS Hypoxia, ischaemia, and exogenous chemicals can induce extracellular and intracellular acidosis, but it is not clear which of these types of acidosis affects endothelial cell function. The synthesis and release of endothelium-derived relaxing factors (EDRFs) are linked to an increase in cytosolic Ca(2+) concentration, and we therefore examined the effects of extracellular and intracellular acidosis on Ca(2+) responses and EDRF production in cultured porcine aortic endothelial cells. METHODS AND RESULTS Cytosolic pH (pH(i)) and Ca(2+) were measured using fluorescent dyes, BCECM/AM (pH-indicator) and fura-2/AM (Ca(2+)-indicator), respectively. EDRFs, nitric oxide (NO) and prostaglandin I(2) (PGI(2)) were assessed using DAF-FM/DA (NO-indicator dye) fluorometry and 6-keto PGF(1alpha) enzyme immunoassay, respectively. HEPES buffers titrated to pH 6.4, 6.9, and 7.4 were used to alter extracellular pH (pH(o)), and propionate (20 mmol/L) was applied to cause intracellular acidosis. Extracellular acidosis strongly suppressed bradykinin (BK, 10 nmol/L)- and thapsigargin (TG, 1 micromol/L)-induced Ca(2+) responses by 30 and 23% at pH(o) 6.9, and by 80 and 97% at pH(o) 6.4, respectively. During the examinations, there were no significant differences in pH(i) among the three groups at pH(o) 7.4, 6.9, and 6.4. Extracellular acidosis also inhibited BK-stimulated PGI(2) production by 55% at pH(o) 6.9 and by 77% at pH(o) 6.4, and NO production by 38% at pH(o) 6.9 and by 91% at pH(o) 6.4. The suppressive effects of extracellular acidosis on Ca(2+) responses and NO production were reversible. Propionate changed pH(i) from 7.3 to 6.9, without altering pH(o) (7.4). Intracellular acidosis had no effect on BK- and TG-induced Ca(2+) responses or NO production. CONCLUSION These results indicate that extracellular, but not intracellular, acidosis causes endothelial dysfunction by inhibiting store-operated Ca(2+) entry, so helping to clarify the vascular pathophysiology of conditions such as ischaemia, hypoxia, acidosis, and ischaemia-reperfusion.


Magnetic Resonance Imaging | 2014

Distribution of late gadolinium enhancement in end-stage hypertrophic cardiomyopathy and dilated cardiomyopathy: differential diagnosis and prediction of cardiac outcome.

Masashi Machii; Hiroshi Satoh; Katsunori Shiraki; Masao Saotome; Tsuyoshi Urushida; Hideki Katoh; Yasuo Takehara; Harumi Sakahara; Hayato Ohtani; Yasushi Wakabayashi; Hiroshi Ukigai; Kei Tawarahara; Hideharu Hayashi

BACKGROUND The prognostic implications of late gadolinium enhancement (LGE) have been evaluated in ischemic and non-ischemic cardiomyopathies. The present study analyzed LGE distribution in patients with end-stage hypertrophic cardiomyopathy (ES-HCM) and with dilated cardiomyopathy (DCM), and tried to identify high risk patients in DCM. METHODS Eleven patients with ES-HCM and 72 with DCM underwent cine- and LGE-cardiac magnetic resonance and ultrasound cardiography. The patient outcome was analyzed retrospectively for 5years of follow-up. RESULTS LGE distributed mainly in the inter-ventricular septum, but spread more diffusely into other left ventricular segments in patients with ES-HCM and in a certain part of patients with DCM. Thus, patients with DCM can be divided into three groups according to LGE distribution; no LGE (n=24), localized LGE (localized at septum, n=36), and extensive LGE (spread into other segments, n=12). Reverse remodeling occurred after treatment in patients with no LGE and with localized LGE, but did not in patients with extensive LGE and with ES-HCM. The event-free survival rate for composite outcome (cardiac death, hospitalization for decompensated heart failure or ventricular arrhythmias) was lowest in patients with extensive LGE (92%, 74% and 42% in no LGE, localized LGE, and extensive LGE, p=0.02 vs. no LGE), and was comparable to that in patients with ES-HCM (42%). CONCLUSIONS In DCM, patients with extensive LGE showed no functional recovery and the lowest event-free survival rate that were comparable to patients with ES-HCM. The analysis of LGE distribution may be valuable to predict reverse remodeling and to identify high-risk patients.

Collaboration


Dive into the Tsuyoshi Urushida's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge