Tsvia Gildor
Rappaport Faculty of Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tsvia Gildor.
PLOS Pathogens | 2014
Galit Kuznets; Elena Vigonsky; Ziva Weissman; Daniela Lalli; Tsvia Gildor; Sarah Kauffman; Paola Turano; Jeffrey M. Becker; Oded Lewinson; Daniel Kornitzer
Iron scavenging constitutes a crucial challenge for survival of pathogenic microorganisms in the iron-poor host environment. Candida albicans, like many microbial pathogens, is able to utilize iron from hemoglobin, the largest iron pool in the hosts body. Rbt5 is an extracellular glycosylphosphatidylinositol (GPI)-anchored heme-binding protein of the CFEM family that facilitates heme-iron uptake by an unknown mechanism. Here, we characterize an additional C. albicans CFEM protein gene, PGA7, deletion of which elicits a more severe heme-iron utilization phenotype than deletion of RBT5. The virulence of the pga7−/− mutant is reduced in a mouse model of systemic infection, consistent with a requirement for heme-iron utilization for C. albicans pathogenicity. The Pga7 and Rbt5 proteins exhibit distinct cell wall attachment, and discrete localization within the cell envelope, with Rbt5 being more exposed than Pga7. Both proteins are shown here to efficiently extract heme from hemoglobin. Surprisingly, while Pga7 has a higher affinity for heme in vitro, we find that heme transfer can occur bi-directionally between Pga7 and Rbt5, supporting a model in which they cooperate in a heme-acquisition relay. Together, our data delineate the roles of Pga7 and Rbt5 in a cell surface protein network that transfers heme from extracellular hemoglobin to the endocytic pathway, and provide a paradigm for how receptors embedded in the cell wall matrix can mediate nutrient uptake across the fungal cell envelope.
Eukaryotic Cell | 2005
Tsvia Gildor; Revital Shemer; Avigail Atir-Lande; Daniel Kornitzer
ABSTRACT Gcn4, a transcription factor that plays a key role in the response of Saccharomyces cerevisiae to amino acid starvation, is regulated at both the levels of translation and of protein stability. Regulated degradation of Gcn4 depends on its phosphorylation by the cyclin-dependent kinase Pho85, in conjunction with the cyclin Pcl5. The pathogenic yeast Candida albicans contains a functional homolog of Gcn4, which is involved in amino acid metabolism, as well as in the regulation of filamentous growth in response to starvation. Here, we show that C. albicans Gcn4 (CaGcn4) is rapidly degraded and that this degradation depends on a Pho85 cyclin homolog, CaPcl5. The regulatory loop that includes Gcn4 and Pcl5 is conserved in C. albicans: like in S. cerevisiae, CaPcl5 is transcriptionally induced by CaGcn4 and is required for CaGcn4 degradation. However, the proteins have coevolved so that there is no cross-recognition between the proteins from the two species: phosphorylation-dependent degradation of CaGcn4 occurs only in the presence of CaPcl5, and S. cerevisiae Gcn4 (ScGcn4) requires ScPcl5 for its degradation. Phenotypic analysis of the Capcl5 mutant indicates that CaPcl5 also modulates the filamentous response of C. albicans in amino acid-rich media.
PLOS Pathogens | 2013
Bernardo Ramírez-Zavala; Michael Weyler; Tsvia Gildor; Christian Schmauch; Daniel Kornitzer; Robert A. Arkowitz; Joachim Morschhäuser
Depending on the environmental conditions, the pathogenic yeast Candida albicans can undergo different developmental programs, which are controlled by dedicated transcription factors and upstream signaling pathways. C. albicans strains that are homozygous at the mating type locus can switch from the normal yeast form (white) to an elongated cell type (opaque), which is the mating-competent form of this fungus. Both white and opaque cells use the Ste11-Hst7-Cek1/Cek2 MAP kinase signaling pathway to react to the presence of mating pheromone. However, while opaque cells employ the transcription factor Cph1 to induce the mating response, white cells recruit a different downstream transcription factor, Tec1, to promote the formation of a biofilm that facilitates mating of opaque cells in the population. The switch from the white to the opaque cell form is itself induced by environmental signals that result in the upregulation of the transcription factor Wor1, the master regulator of white-opaque switching. To get insight into the upstream signaling pathways controlling the switch, we expressed all C. albicans protein kinases from a tetracycline-inducible promoter in a switching-competent strain. Screening of this library of strains showed that a hyperactive form of Ste11 lacking its N-terminal domain (Ste11(ΔN467)) efficiently stimulated white cells to switch to the opaque phase, a behavior that did not occur in response to pheromone. Ste11(ΔN467)-induced switching specifically required the downstream MAP kinase Cek1 and its target transcription factor Cph1, but not Cek2 and Tec1, and forced expression of Cph1 also promoted white-opaque switching in a Wor1-dependent manner. Therefore, depending on the activation mechanism, components of the pheromone-responsive MAP kinase pathway can be reconnected to stimulate an alternative developmental program, switching of white cells to the mating-competent opaque phase.
Laboratory Investigation | 2008
Olga Ohayon; Nidal Mawasi; Anna Pevzner; Ana Tryvitz; Tsvia Gildor; Mark Pines; Marcos Rojkind; Melia Paizi; Gadi Spira
Advanced hepatic fibrosis is characterized by excessive extracellular matrix deposition, where collagen and proteoglycans are the main constituents of scar tissue. In previous studies, we showed that heparanase, a heparan sulfate-degrading enzyme, and vascular endothelial growth factor (VEGF) play an important role during liver development and remodeling. In this communication, we investigated the relationship between heparanase and VEGF in thioacetamide-induced liver fibrosis in rats. Our study shows that heparanase mRNA expression levels correlate with those of VEGF during the induction and recovery stages of liver fibrosis. We further demonstrated that treating fibrotic rat livers with halofuginone (HF), a multipotent antifibrogenic drug, and subsequently subjecting them to hydrodynamics-based transfection with human VEGF-165 resulted in elevated expression of heparanase mRNA. Moreover, these rats demonstrated an improved capacity to regenerate following 70% partial hepatectomy. In vitro, HF stimulated heparanase and VEGF mRNA expression in hepatic stellate cells. Taken together, our results suggest that in addition to the known multiple functions of HF, it also enhances heparanase and VEGF expression and promotes liver regeneration. Accordingly, HF seems to possess ideal properties required to become an excellent antifibrogenic agent in humans.
Molecular and Cellular Biology | 2008
Sharon Aviram; Einav Simon; Tsvia Gildor; Fabian Glaser; Daniel Kornitzer
ABSTRACT Pho85 cyclins (Pcls), activators of the yeast cyclin-dependent kinase (CDK) Pho85, belong together with the p35 activator of mammalian CDK5 to a distinct structural cyclin class. Different Pcls target Pho85 to distinct substrates. Pcl5 targets Pho85 specifically to Gcn4, a yeast transcription factor involved in the response to amino acid starvation, eventually causing the degradation of Gcn4. Pcl5 is itself highly unstable, an instability that was postulated to be important for regulation of Gcn4 degradation. We used hybrids between different Pcls to circumscribe the substrate recognition function to the core cyclin box domain of Pcl5. Furthermore, the cyclin hybrids revealed that Pcl5 degradation is uniquely dependent on two distinct degradation signals: one N-terminal and one C-terminal to the cyclin box domain. Whereas the C-terminal degradation signal is independent of Pho85, the N-terminal degradation signal requires phosphorylation of a specific threonine residue by the Pho85 molecule bound to the cyclin. This latter mode of degradation depends on the SCF ubiquitin ligase. Degradation of Pcl5 after self-catalyzed phosphorylation ensures that activity of the Pho85/Pcl5 complex is self-limiting in vivo. We demonstrate the importance of this mechanism for the regulation of Gcn4 degradation and for cell growth under conditions of amino acid starvation.
Molecular Microbiology | 2012
Ayala Ofir; Kay Hofmann; Esther Weindling; Tsvia Gildor; Katherine S. Barker; P. David Rogers; Daniel Kornitzer
To explore cell cycle regulation in the dimorphic fungus Candida albicans, we identified and characterized CaNrm1, a C. albicans homologue of the Saccharomyces cerevisiae Whi5 and Nrm1 transcription inhibitors that, analogous to mammalian Rb, regulate the cell cycle transcription programme during the G1 phase. CaNRM1 is able to complement the phenotypes of both whi5 and nrm1 mutants in S. cerevisiae. In C. albicans, global transcription analysis of the CaNRM1 deletion mutant reveals a preferential induction of G1‐ and G1/S‐specific genes. CaNrm1 interacts genetically with the C. albicans MBF functional homologue, and physically with its subunit CaSwi4. Similar to S. cerevisiae Whi5, CaNrm1 subcellular localization oscillates with the cell cycle between the nucleus and the cytoplasm. Deletion of CaNRM1 further results in increased resistance to hydroxyurea, an inhibitor of DNA replication; analysis of the expression of ribonucleotide reductase, the target of hydroxyurea, suggests that its transcriptional induction in response to hydroxyurea is regulated via CaNrm1, and biochemical analysis shows that hydroxyurea causes disruption of the interaction of CaNrm1 with CaSwi4. Furthermore, induction of the hyphal‐specific genes is dampened under certain conditions in the Canrm1−/− mutant, suggesting that the cell cycle transcription programme can influence the morphogenetic transcription programme of C. albicans.
Journal of Molecular Biology | 2013
Einav Simon; Tsvia Gildor; Daniel Kornitzer
The Candida albicans cyclin CaPcl5 activates the cyclin-dependent kinase Pho85 and induces phosphorylation of the transcription factor CaGcn4, leading to its degradation. The high substrate specificity of the CaPcl5/Pho85 complex provides the opportunity to study the determinants of substrate selectivity of cyclins. Mutational analysis of CaPcl5 suggests that residues in a predicted α-helix at the N-terminal end of the cyclin box, as well as in helix I of the cyclin box, play a role in specific substrate recognition. Similar to Saccharomyces cerevisiae Pcl5, we show here that CaPcl5 induces its own phosphorylation at two adjacent sites in the N-terminal region of the protein and that this phosphorylation causes degradation of the cyclin in vivo via the SCF(CDC4) ubiquitin ligase. Remarkably, however, in vitro studies reveal that this phosphorylation also results in a loss of specific substrate recognition, thereby providing an additional novel mechanism for limiting cyclin activity.
Frontiers in Cellular and Infection Microbiology | 2018
Hagit Bar-Yosef; Tsvia Gildor; Bernardo Ramírez-Zavala; Christian Schmauch; Ziva Weissman; Mariel Pinsky; Rawi Naddaf; Joachim Morschhäuser; Robert A. Arkowitz; Daniel Kornitzer
The human pathogenic fungus Candida albicans can switch between yeast and hyphal morphologies as a function of environmental conditions and cellular physiology. The yeast-to-hyphae morphogenetic switch is activated by well-established, kinase-based signal transduction pathways that are induced by extracellular stimuli. In order to identify possible inhibitory pathways of the yeast-to-hyphae transition, we interrogated a collection of C. albicans protein kinases and phosphatases ectopically expressed under the regulation of the TETon promoter. Proportionately more phosphatases than kinases were identified that inhibited hyphal morphogenesis, consistent with the known role of protein phosphorylation in hyphal induction. Among the kinases, we identified AKL1 as a gene that significantly suppressed hyphal morphogenesis in serum. Akl1 specifically affected hyphal elongation rather than initiation: overexpression of AKL1 repressed hyphal growth, and deletion of AKL1 resulted in acceleration of the rate of hyphal elongation. Akl1 suppressed fluid-phase endocytosis, probably via Pan1, a putative clathrin-mediated endocytosis scaffolding protein. In the absence of Akl1, the Pan1 patches were delocalized from the sub-apical region, and fluid-phase endocytosis was intensified. These results underscore the requirement of an active endocytic pathway for hyphal morphogenesis. Furthermore, these results suggest that under standard conditions, endocytosis is rate-limiting for hyphal elongation.
Molecular Biology of the Cell | 2005
Avigail Atir-Lande; Tsvia Gildor; Daniel Kornitzer
PLOS Pathogens | 2014
Galit Kuznets; Elena Vigonsky; Ziva Weissman; Daniela Lalli; Tsvia Gildor; Sarah Kauffman; Paola Turano; Jeffrey M. Becker; Oded Lewinson; Daniel Kornitzer