Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tuan A. Duong is active.

Publication


Featured researches published by Tuan A. Duong.


Persoonia | 2015

One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes

J. B. Stielow; C.A. Lévesque; Keith A. Seifert; Wieland Meyer; Laszlo Irinyi; D. Smits; R. Renfurm; G.J.M. Verkley; Marizeth Groenewald; D. Chaduli; A. Lomascolo; S. Welti; L. Lesage-Meessen; A. Favel; Abdullah M. S. Al-Hatmi; Ulrike Damm; N. Yilmaz; Jos Houbraken; Lorenzo Lombard; W. Quaedvlieg; M. Binder; L.A.I. Vaas; D. Vu; Andrey Yurkov; Dominik Begerow; O. Roehl; Marco A. Guerreiro; Álvaro Fonseca; K. Samerpitak; A.D. van Diepeningen

The aim of this study was to assess potential candidate gene regions and corresponding universal primer pairs as secondary DNA barcodes for the fungal kingdom, additional to ITS rDNA as primary barcode. Amplification efficiencies of 14 (partially) universal primer pairs targeting eight genetic markers were tested across > 1 500 species (1 931 strains or specimens) and the outcomes of almost twenty thousand (19 577) polymerase chain reactions were evaluated. We tested several well-known primer pairs that amplify: i) sections of the nuclear ribosomal RNA gene large subunit (D1–D2 domains of 26/28S); ii) the complete internal transcribed spacer region (ITS1/2); iii) partial β -tubulin II (TUB2); iv) γ-actin (ACT); v) translation elongation factor 1-α (TEF1α); and vi) the second largest subunit of RNA-polymerase II (partial RPB2, section 5–6). Their PCR efficiencies were compared with novel candidate primers corresponding to: i) the fungal-specific translation elongation factor 3 (TEF3); ii) a small ribosomal protein necessary for t-RNA docking; iii) the 60S L10 (L1) RP; iv) DNA topoisomerase I (TOPI); v) phosphoglycerate kinase (PGK); vi) hypothetical protein LNS2; and vii) alternative sections of TEF1α. Results showed that several gene sections are accessible to universal primers (or primers universal for phyla) yielding a single PCR-product. Barcode gap and multi-dimensional scaling analyses revealed that some of the tested candidate markers have universal properties providing adequate infra- and inter-specific variation that make them attractive barcodes for species identification. Among these gene sections, a novel high fidelity primer pair for TEF1α, already widely used as a phylogenetic marker in mycology, has potential as a supplementary DNA barcode with superior resolution to ITS. Both TOPI and PGK show promise for the Ascomycota, while TOPI and LNS2 are attractive for the Pucciniomycotina, for which universal primers for ribosomal subunits often fail.


Studies in Mycology | 2014

Redefining Ceratocystis and allied genera.

Z.W. de Beer; Tuan A. Duong; Irene Barnes; Brenda D. Wingfield; Michael J. Wingfield

The genus Ceratocystis was established in 1890 and accommodates many important fungi. These include serious plant pathogens, significant insect symbionts and agents of timber degradation that result in substantial economic losses. Virtually since its type was described from sweet potatoes, the taxonomy of Ceratocystis has been confused and vigorously debated. In recent years, particulary during the last two decades, it has become very obvious that this genus includes a wide diversity of very different fungi. These have been roughly lumped together due to their similar morphological structures that have clearly evolved through convergent evolution linked to an insect-associated ecology. As has been true for many other groups of fungi, the emergence of DNA-based sequence data and associated phylogenetic inferences, have made it possible to robustly support very distinct boundaries defined by morphological characters and ecological differences. In this study, DNA-sequence data for three carefully selected gene regions (60S, LSU, MCM7) were generated for 79 species residing in the aggregate genus Ceratocystis sensu lato and these data were subjected to rigorous phylogenetic analyses. The results made it possible to distinguish seven major groups for which generic names have been chosen and descriptions either provided or emended. The emended genera included Ceratocystis sensu stricto, Chalaropsis, Endoconidiophora, Thielaviopsis, and Ambrosiella, while two new genera, Davidsoniella and Huntiella, were described. In total, 30 new combinations have been made. This major revision of the generic boundaries in the Ceratocystidaceae will simplify future treatments and work with an important group of fungi including distantly related species illogically aggregated under a single name.


Persoonia | 2014

Fungal Planet description sheets: 214-280

Pedro W. Crous; Roger G. Shivas; W. Quaedvlieg; M. Van der Bank; Y. Zhang; Brett A. Summerell; Josep Guarro; Michael J. Wingfield; Alan R. Wood; Acelino Couto Alfenas; Uwe Braun; J. F. Cano-Lira; Dania García; Yasmina Marin-Felix; P. Alvarado; J.P. Andrade; J. Armengol; A. Assefa; A. den Breeÿen; Ippolito Camele; Ratchadawan Cheewangkoon; J.T. De Souza; Tuan A. Duong; F. Esteve-Raventós; Jacques Fournier; Salvatore Frisullo; J. García-Jiménez; A. Gardiennet; Josepa Gené; Margarita Hernández-Restrepo

Novel species of microfungi described in the present study include the following from South Africa: Cercosporella dolichandrae from Dolichandra unguiscati, Seiridium podocarpi from Podocarpus latifolius, Pseudocercospora parapseudarthriae from Pseudarthria hookeri, Neodevriesia coryneliae from Corynelia uberata on leaves of Afrocarpus falcatus, Ramichloridium eucleae from Euclea undulata and Stachybotrys aloeticola from Aloe sp. (South Africa), as novel member of the Stachybotriaceae fam. nov. Several species were also described from Zambia, and these include Chaetomella zambiensis on unknown Fabaceae, Schizoparme pseudogranati from Terminalia stuhlmannii, Diaporthe isoberliniae from Isoberlinia angolensis, Peyronellaea combreti from Combretum mossambiciensis, Zasmidium rothmanniae and Phaeococcomyces rothmanniae from Rothmannia engleriana, Diaporthe vangueriae from Vangueria infausta and Diaporthe parapterocarpi from Pterocarpus brenanii. Novel species from the Netherlands include: Stagonospora trichophoricola, Keissleriella trichophoricola and Dinemasporium trichophoricola from Trichophorum cespitosum, Phaeosphaeria poae, Keissleriella poagena, Phaeosphaeria poagena, Parastagonospora poagena and Pyrenochaetopsis poae from Poa sp., Septoriella oudemansii from Phragmites australis and Dendryphion europaeum from Hedera helix (Germany) and Heracleum sphondylium (the Netherlands). Novel species from Australia include: Anungitea eucalyptorum from Eucalyptus leaf litter, Beltraniopsis neolitseae and Acrodontium neolitseae from Neolitsea australiensis, Beltraniella endiandrae from Endiandra introrsa, Phaeophleospora parsoniae from Parsonia straminea, Penicillifer martinii from Cynodon dactylon, Ochroconis macrozamiae from Macrozamia leaf litter, Triposporium cycadicola, Circinotrichum cycadis, Cladosporium cycadicola and Acrocalymma cycadis from Cycas spp. Furthermore, Vermiculariopsiella dichapetali is described from Dichapetalum rhodesicum (Botswana), Ophiognomonia acadiensis from Picea rubens (Canada), Setophoma vernoniae from Vernonia polyanthes and Penicillium restingae from soil (Brazil), Pseudolachnella guaviyunis from Myrcianthes pungens (Uruguay) and Pseudocercospora neriicola from Nerium oleander (Italy). Novelties from Spain include: Dendryphiella eucalyptorum from Eucalyptus globulus, Conioscypha minutispora from dead wood, Diplogelasinospora moalensis and Pseudoneurospora canariensis from soil and Inocybe lanatopurpurea from reforested woodland of Pinus spp. Novelties from France include: Kellermania triseptata from Agave angustifolia, Zetiasplozna acaciae from Acacia melanoxylon, Pyrenochaeta pinicola from Pinus sp. and Pseudonectria rusci from Ruscus aculeatus. New species from China include: Dematiocladium celtidicola from Celtis bungeana, Beltrania pseudorhombica, Chaetopsina beijingensis and Toxicocladosporium pini from Pinus spp. and Setophaeosphaeria badalingensis from Hemerocallis fulva. Novel genera of Ascomycetes include Alfaria from Cyperus esculentus (Spain), Rinaldiella from a contaminated human lesion (Georgia), Hyalocladosporiella from Tectona grandis (Brazil), Pseudoacremonium from Saccharum spontaneum and Melnikomyces from leaf litter (Vietnam), Annellosympodiella from Juniperus procera (Ethiopia), Neoceratosperma from Eucalyptus leaves (Thailand), Ramopenidiella from Cycas calcicola (Australia), Cephalotrichiella from air in the Netherlands, Neocamarosporium from Mesembryanthemum sp. and Acervuloseptoria from Ziziphus mucronata (South Africa) and Setophaeosphaeria from Hemerocallis fulva (China). Several novel combinations are also introduced, namely for Phaeosphaeria setosa as Setophaeosphaeria setosa, Phoma heteroderae as Peyronellaea heteroderae and Phyllosticta maydis as Peyronellaea maydis. Morphological and culture characteristics along with ITS DNA barcodes are provided for all taxa.


Mycologia | 2012

Phylogeny and taxonomy of species in the Grosmannia serpens complex

Tuan A. Duong; Z. Wilhelm de Beer; Brenda D. Wingfield; Michael J. Wingfield

Grosmannia serpens was first described from pine in Italy in 1936 and it has been recorded subsequently from many countries in both the northern and southern hemispheres. The fungus is vectored primarily by root-infesting bark beetles and has been reported to contribute to pine-root diseases in Italy and South Africa. The objective of this study was to consider the identity of a global collection of isolates not previously available and using DNA sequence-based comparisons not previously applied to most of these isolates. Phylogenetic analyses of the ITS2-LSU, actin, beta-tubulin, calmodulin and translation elongation factor-1 alpha sequences revealed that these morphologically similar isolates represent a complex of five cryptic species. Grosmannia serpens sensu stricto thus is redefined and comprises only isolates from Italy including the ex-type isolate. The ex-type isolate of Verticicladiella alacris was shown to be distinct from G. serpens, and a new holomorphic species, G. alacris, is described. The teleomorph state of G. alacris was obtained through mating studies in the laboratory, confirming that this species is heterothallic. Most of the available isolates, including those from South Africa, USA, France, Portugal and some from Spain, represent G. alacris. The remaining three taxa, known only in their anamorph states, are described as the new species Leptographium gibbsii for isolates from the UK, L. yamaokae for isolates from Japan and L. castellanum for isolates from Spain and the Dominican Republic.


Persoonia | 2015

Fungal Planet description sheets: 371-399

Pedro W. Crous; Michael J. Wingfield; J.J. Le Roux; D. Strasberg; Roger G. Shivas; P. Alvarado; Jacqueline Edwards; G. Moreno; R. Sharma; M. S. Sonawane; Yu Pei Tan; A. Altes; T. Barasubiye; C.W. Barnes; Robert A. Blanchette; D. Boertmann; A. Bogo; J. R. Carlavilla; Ratchadawan Cheewangkoon; Rosalie Daniel; Z.W. de Beer; M. de Jesús Yáñez-Morales; Tuan A. Duong; J. Fernandez-Vicente; Andrew D. W. Geering; David Guest; Benjamin W. Held; M. Heykoop; V. Hubka; A. M. Ismail

Novel species of fungi described in the present study include the following from Australia: Neoseptorioides eucalypti gen. & sp. nov. from Eucalyptus radiata leaves, Phytophthora gondwanensis from soil, Diaporthe tulliensis from rotted stem ends of Theobroma cacao fruit, Diaporthe vawdreyi from fruit rot of Psidium guajava, Magnaporthiopsis agrostidis from rotted roots of Agrostis stolonifera and Semifissispora natalis from Eucalyptus leaf litter. Furthermore, Neopestalotiopsis egyptiaca is described from Mangifera indica leaves (Egypt), Roussoella mexicana from Coffea arabica leaves (Mexico), Calonectria monticola from soil (Thailand), Hygrocybe jackmanii from littoral sand dunes (Canada), Lindgomyces madisonensis from submerged decorticated wood (USA), Neofabraea brasiliensis from Malus domestica (Brazil), Geastrum diosiae from litter (Argentina), Ganoderma wiiroense on angiosperms (Ghana), Arthrinium gutiae from the gut of a grasshopper (India), Pyrenochaeta telephoni from the screen of a mobile phone (India) and Xenoleptographium phialoconidium gen. & sp. nov. on exposed xylem tissues of Gmelina arborea (Indonesia). Several novelties are introduced from Spain, namely Psathyrella complutensis on loamy soil, Chlorophyllum lusitanicum on nitrified grasslands (incl. Chlorophyllum arizonicum comb. nov.), Aspergillus citocrescens from cave sediment and Lotinia verna gen. & sp. nov. from muddy soil. Novel foliicolous taxa from South Africa include Phyllosticta carissicola from Carissa macrocarpa, Pseudopyricularia hagahagae from Cyperaceae and Zeloasperisporium searsiae from Searsia chirindensis. Furthermore, Neophaeococcomyces is introduced as a novel genus, with two new combinations, N. aloes and N. catenatus. Several foliicolous novelties are recorded from La Réunion, France, namely Ochroconis pandanicola from Pandanus utilis, Neosulcatispora agaves gen. & sp. nov. from Agave vera-cruz, Pilidium eucalyptorum from Eucalyptus robusta, Strelitziana syzygii from Syzygium jambos (incl. Strelitzianaceae fam. nov.) and Pseudobeltrania ocoteae from Ocotea obtusata (Beltraniaceae emend.). Morphological and culture characteristics along with ITS DNA barcodes are provided for all taxa.


Studies in Mycology | 2016

The divorce of Sporothrix and Ophiostoma: solution to a problematic relationship

Z.W. de Beer; Tuan A. Duong; Michael J. Wingfield

One of the causal agents of human sporotrichosis, Sporothrix schenckii, is the type species of the genus Sporothrix. During the course of the last century the asexual morphs of many Ophiostoma spp. have also been treated in Sporothrix. More recently several DNA-based studies have suggested that species of Sporothrix and Ophiostoma converge in what has become known as Ophiostoma s. lat. Were the one fungus one name principles adopted in the Melbourne Code to be applied to Ophiostoma s. lat., Sporothrix would have priority over Ophiostoma, resulting in more than 100 new combinations. The consequence would be name changes for several economically important tree pathogens including O. novo-ulmi. Alternatively, Ophiostoma could be conserved against Sporothrix, but this would necessitate changing the names of the important human pathogens in the group. In this study, we sought to resolve the phylogenetic relationship between Ophiostoma and Sporothrix. DNA sequences were determined for the ribosomal large subunit and internal transcribed spacer regions, as well as the beta-tubulin and calmodulin genes in 65 isolates. The results revealed Sporothrix as a well-supported monophyletic lineage including 51 taxa, distinct from Ophiostoma s. str. To facilitate future studies exploring species level resolution within Sporothrix, we defined six species complexes in the genus. These include the Pathogenic Clade containing the four human pathogens, together with the S. pallida-, S. candida-, S. inflata-, S. gossypina- and S. stenoceras complexes, which include environmental species mostly from soil, hardwoods and Protea infructescences. The description of Sporothrix is emended to include sexual morphs, and 26 new combinations. Two new names are also provided for species previously treated as Ophiostoma.


PLOS ONE | 2013

Large shift in symbiont assemblage in the invasive red turpentine beetle.

Stephen J. Taerum; Tuan A. Duong; Z. Wilhelm de Beer; Nancy E. Gillette; Jianghua Sun; Donald R. Owen; Michael J. Wingfield

Changes in symbiont assemblages can affect the success and impact of invasive species, and may provide knowledge regarding the invasion histories of their vectors. Bark beetle symbioses are ideal systems to study changes in symbiont assemblages resulting from invasions. The red turpentine beetle (Dendroctonus valens) is a bark beetle species that recently invaded China from its native range in North America. It is associated with ophiostomatalean fungi in both locations, although the fungi have previously been well-surveyed only in China. We surveyed the ophiostomatalean fungi associated with D. valens in eastern and western North America, and identified the fungal species using multi-gene phylogenies. From the 307 collected isolates (147 in eastern North America and 160 in western North America), we identified 20 species: 11 in eastern North America and 13 in western North America. Four species were shared between eastern North America and western North America, one species (Ophiostoma floccosum) was shared between western North America and China, and three species (Grosmannia koreana, Leptographium procerum, and Ophiostoma abietinum) were shared between eastern North America and China. Ophiostoma floccosum and O. abietinum have worldwide distributions, and were rarely isolated from D. valens. However, G. koreana and L. procerum are primarily limited to Asia and North America respectively. Leptographium procerum, which is thought to be native to North America, represented >45% of the symbionts of D. valens in eastern North America and China, suggesting D. valens may have been introduced to China from eastern North America. These results are surprising, as previous population genetics studies on D. valens based on the cytochrome oxidase I gene have suggested that the insect was introduced into China from western North America.


Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2012

Grosmannia and Leptographium spp. associated with conifer-infesting bark beetles in Finland and Russia, including Leptographium taigense sp. nov.

Riikka Linnakoski; Z. Wilhelm de Beer; Tuan A. Duong; Pekka Niemelä; Ari Pappinen; Michael J. Wingfield

Species of Grosmannia with Leptographium anamorphs include important forest pathogens and agents of blue stain in timber. They are commonly found in association with forest pests, such as bark beetles. During a survey of ophiostomatoid fungi in eastern parts of Finland and neighboring Russia, species belonging to the genus Grosmannia were isolated from 12 different bark beetle species infesting Picea abies and Pinus sylvestris, the most economically important conifers in the region. Identification of these fungi was based on morphology, DNA sequence comparisons for three gene regions and phylogenetic analyses. A total of ten taxa were identified. These belonged to six different species complexes in Grosmannia. The phylogenetic analyses provided an opportunity to redefine the G. galeiformis-, L. procerum-, L. lundbergii-, G. piceiperda-, G. olivacea- and G. penicillata-complexes, and to consider the species emerging from the survey within the context of these complexes. The species included G. galeiformis, G. olivacea, L. chlamydatum, L. lundbergii, L. truncatum and a novel taxon, described here as L. taigense sp. nov. In addition, species closely related to G. cucullata, G. olivaceapini comb. nov., G. piceiperda and L. procerum were isolated but their identity could not be resolved. The overall results indicate that the diversity of Grosmannia species in the boreal forests remains poorly understood and that further studies are needed to clarify the status of several species or species complexes.


Fungal Genetics and Biology | 2014

MAT gene idiomorphs suggest a heterothallic sexual cycle in a predominantly asexual and important pine pathogen.

Wubetu Bihon; Michael J. Wingfield; Bernard Slippers; Tuan A. Duong; Brenda D. Wingfield

Diplodia pinea (=Sphaeropsis sapinea) is a well-known and economically important latent pathogen of Pinus spp. in many parts of the world. Despite intensive scrutiny, its sexual state has never been observed and the fungus has thus been considered exclusively asexual. It was, therefore, surprising that a recent population genetics study showed high genotypic diversity and random association of alleles in a number of populations, suggesting that the pathogen has a cryptic sexual stage. Using the genome sequence of two individual D. pinea isolates, we interrogated the structure of the MAT locus in this fungus. The results suggested that D. pinea is heterothallic (self-sterile) with complete and apparently functional copies of the MAT genes containing the α-1 and HMG domains present in different isolates. In addition to the MAT1-2-1 and MAT1-1-1 genes, we found a MAT1-1-4 gene in the MAT1-1 idiomorph and a novel MAT1-2-5 gene in the MAT1-2 idiomorph. Importantly, the frequencies of occurrence of both idiomorphs in populations examined were not significantly different from a 1:1 ratio, which would be expected in sexually reproducing populations. Although the sexual state has never been observed, the results strongly suggest that D. pinea has a cryptic, heterothallic sexual cycle.


Fungal Biology | 2013

Characterization of the mating-type genes in Leptographium procerum and Leptographium profanum

Tuan A. Duong; Z. Wilhelm de Beer; Brenda D. Wingfield; Michael J. Wingfield

Leptographium procerum and the closely related species Leptographium profanum, are ascomycetes associated with root-infesting beetles on pines and hardwood trees, respectively. Both species occur in North America where they are apparently native. L. procerum has also been found in Europe, China New Zealand, and South Africa where it has most probably been introduced. As is true for many other Leptographium species, sexual states have never been observed in L. procerum or L. profanum. The objectives of this study were to clone and characterize the mating type loci of these fungi, and to develop markers to determine the mating types of individual isolates. To achieve this, a partial sequence of MAT1-2-1 was amplified using degenerate primers targeting the high mobility group (HMG) sequence. A complete MAT1-2 idiomorph of L. profanum was subsequently obtained by screening a genomic library using the HMG sequence as a probe. Long range PCR was used to amplify the complete MAT1-1 idiomorph of L. profanum and both the MAT1-1 and MAT1-2 idiomorphs of L. procerum. Characterization of the MAT idiomorphs suggests that the MAT genes are fully functional and that individuals of both these species are self-sterile in nature with a heterothallic mating system. Mating type markers were developed and tested on a population of L. procerum isolates from the USA, the assumed center of origin for this species. The results suggest that cryptic sexual reproduction is occurring or has recently taken place within this population.

Collaboration


Dive into the Tuan A. Duong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge