Tuane C. R. G. Vieira
Federal University of Rio de Janeiro
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tuane C. R. G. Vieira.
Accounts of Chemical Research | 2010
Jerson L. Silva; Tuane C. R. G. Vieira; Mariana P. B. Gomes; Ana Paula D. Ano Bom; Luís Maurício T.R. Lima; Mônica S. Freitas; Daniella Ishimaru; Yraima Cordeiro; Debora Foguel
Protein misfolding has been implicated in a large number of diseases termed protein- folding disorders (PFDs), which include Alzheimer’s disease, Parkinson’s disease, transmissible spongiform encephalopathies, familial amyloid polyneuropathy, Huntington’s disease, and type II diabetes. In these diseases, large quantities of incorrectly folded proteins undergo aggregation, destroying brain cells and other tissues. The interplay between ligand binding and hydration is an important component of the formation of misfolded protein species. Hydration drives various biological processes, including protein folding, ligand binding, macromolecular assembly, enzyme kinetics, and signal transduction. The changes in hydration and packing, both when proteins fold correctly or when folding goes wrong, leading to PFDs, are examined through several biochemical, biophysical, and structural approaches. Although in many cases the binding of a ligand such as a nucleic acid helps to prevent misfolding and aggregation, there are several examples in which ligands induce misfolding and assembly into amyloids. This occurs simply because the formation of structured aggregates (such as protofibrillar and fibrillar amyloids) involves decreases in hydration, formation of a hydrogen-bond network in the secondary structure, and burying of nonpolar amino acid residues, processes that also occur in the normal folding landscape. In this Account, we describe the present knowledge of the folding and misfolding of different proteins, with a detailed emphasis on mammalian prion protein (PrP) and tumoral suppressor protein p53; we also explore how ligand binding and hydration together influence the fate of the proteins. Anfinsen’s paradigm that the structure of a protein is determined by its amino acid sequence is to some extent contradicted by the observation that there are two isoforms of the prion protein with the same sequence: the cellular and the misfolded isoform. The cellular isoform of PrP has a disordered N-terminal domain and a highly flexible, not-well-packed C-terminal domain, which might account for its significant hydration. When PrP binds to biological molecules, such as glycosaminoglycans and nucleic acids, the disordered segments appear to fold and become less hydrated. Formation of the PrP−nucleic acid complex seems to accelerate the conversion of the cellular form of the protein into the disease-causing isoform. For p53, binding to some ligands, including nucleic acids, would prevent misfolding of the protein. Recently, several groups have begun to analyze the folding−misfolding of the individual domains of p53, but several questions remain unanswered. We discuss the implications of these findings for understanding the productive and incorrect folding pathways of these proteins in normal physiological states and in human disease, such as prion disorders and cancer. These studies are shown to lay the groundwork for the development of new drugs.
Chemical Reviews | 2014
Jerson L. Silva; Andréa C. Oliveira; Tuane C. R. G. Vieira; Guilherme A. P. de Oliveira; Marisa C. Suarez; Debora Foguel
Jerson L. Silva,*,† Andrea C. Oliveira,† Tuane C. R. G. Vieira,† Guilherme A. P. de Oliveira,† Marisa C. Suarez,‡ and Debora Foguel† †Instituto de Bioquimica Medica Leopoldo de Meis, Instituto Nacional de Ciencia e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonancia Magnetica Nuclear Jiri Jonas, and ‡Polo Xereḿ, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
Journal of Biological Chemistry | 2008
Mariana P. B. Gomes; Thiago A. Millen; Priscila S. Ferreira; Narcisa L. Cunha e Silva; Tuane C. R. G. Vieira; Marcius S. Almeida; Jerson L. Silva; Yraima Cordeiro
Conversion of the cellular prion protein (PrPC) into its altered conformation, PrPSc, is believed to be the major cause of prion diseases. Although PrP is the only identified agent for these diseases, there is increasing evidence that other molecules can modulate the conversion. We have found that interaction of PrP with double-stranded DNA leads to a protein with higher β-sheet content and characteristics similar to those of PrPSc. RNA molecules can also interact with PrP and potentially modulate PrPC to PrPSc conversion or even bind differentially to both PrP isoforms. Here, we investigated the interaction of recombinant murine PrP with synthetic RNA sequences and with total RNA extracted from cultured neuroblastoma cells (N2aRNA). We found that PrP interacts with N2aRNA with nanomolar affinity, aggregates upon this interaction, and forms species partially resistant to proteolysis. RNA does not bind to N-terminal deletion mutants of PrP, indicating that the N-terminal region is important for this process. Cell viability assays showed that only the N2aRNA extract induces PrP-RNA aggregates that can alter the homeostasis of cultured cells. Small RNAs bound to PrP give rise to nontoxic small oligomers. Nuclear magnetic resonance measurements of the PrP-RNA complex revealed structural changes in PrP, but most of its native fold is maintained. These results indicate that there is selectivity in the species generated by interaction with different molecules of RNA. The catalytic effect of RNA on the PrPC→PrPSc conversion depends on the RNA sequence, and small RNA molecules may exert a protective effect.
Journal of the American Chemical Society | 2011
Tuane C. R. G. Vieira; Daniel P. Reynaldo; Mariana P. B. Gomes; Marcius S. Almeida; Yraima Cordeiro; Jerson L. Silva
The conversion of cellular prion protein (PrP(C)) into the pathological conformer PrP(Sc) requires contact between both isoforms and probably also requires a cellular factor, such as a nucleic acid or a glycosaminoglycan (GAG). Little is known about the structural features implicit in the GAG-PrP interaction. In the present work, light scattering, fluorescence, circular dichroism, and nuclear magnetic resonance (NMR) spectroscopy were used to describe the chemical and physical properties of the murine recombinant PrP 23-231 interaction with low molecular weight heparin (LMWHep) at pH 7.4 and 5.5. LMWHep interacts with rPrP 23-231, thereby inducing transient aggregation. The interaction between murine rPrP and heparin at pH 5.5 had a stoichiometry of 2:1 (LMWHep:rPrP 23-231), in contrast to a 1:1 binding ratio at pH 7.4. At binding equilibrium, NMR spectra showed that rPrP complexed with LMWHep had the same general fold as that of the free protein, even though the binding can be indicated by significant changes in few residues of the C-terminal domain, especially at pH 5.5. Notably, the soluble LMWHep:rPrP complex prevented RNA-induced aggregation. We also investigated the interaction between LMWHep and the deletion mutants rPrP Δ51-90 and Δ32-121. Heparin did not bind these constructs at pH 7.4 but was able to interact at pH 5.5, indicating that this glycosaminoglycan binds the octapeptide repeat region at pH 7.4 but can also bind other regions of the protein at pH 5.5. The interaction at pH 5.5 was dependent on histidine residues of the murine rPrP 23-231. Depending on the cellular milieu, the PrP may expose different regions that can bind GAG. These results shed light on the role of GAGs in PrP conversion. The transient aggregation of PrP may explain why some GAGs have been reported to induce the conversion into the misfolded, scrapie conformation, whereas others are thought to protect against conversion. The acquired resistance of the complex against RNA-induced aggregation explains some of the unique properties of the PrP interaction with GAGs.
The FASEB Journal | 2014
Tuane C. R. G. Vieira; Yraima Cordeiro; Byron Caughey; Jerson L. Silva
The conversion of the prion protein (PrP) into scrapie PrP (PrPSc) is a central event in prion diseases. Several molecules work as cofactors in the conversion process, including glycosaminoglycans (GAGs). GAGs exhibit a paradoxical effect, as they convert PrP into protease‐resistant PrP (PrP‐res) but also exert protective activity. We compared the stability and aggregation propensity of PrP and the heparin‐PrP complex through the application of different in vitro aggregation approaches, including real‐time quaking‐induced conversion (RT‐QuIC). Transmissible spongiform encephalopathy–associated forms from mouse and hamster brain homogenates were used to seed RT‐QuIC‐induced fibrillization. In our study, interaction between heparin and cellular PrP (PrPC) increased thermal PrP stability, leading to an 8‐fold decrease in temperature‐induced aggregation. The interaction of low‐molecular‐weight heparin (LMWHep) with the PrP N‐ or C‐terminal domain affected not only the extent of PrP fibrillization but also its kinetics, lowering the reaction rate constant from 1.04 to 0.29 s–1 and increasing the lag phase from 12 to 19 h in RT‐QuIC experiments. Our findings explain the protective effect of heparin in different models of prion and prion‐like neurodegenerative diseases and establish the groundwork for the development of therapeutic strategies based on GAGs.—Vieira, T. C. R. G., Cordeiro, Y., Caughey, B., Silva, J. L. Heparin binding confers prion stability and impairs its aggregation. FASEB J. 28, 2667–2676 (2014). www.fasebj.org
Wiley Interdisciplinary Reviews - Rna | 2012
Mariana P. B. Gomes; Tuane C. R. G. Vieira; Yraima Cordeiro; Jerson L. Silva
Prion diseases remain a challenge to modern science in the 21st century because of their capacity for transmission without an encoding nucleic acid. PrPSc, the infectious and alternatively folded form of the PrP prion protein, is capable of self‐replication, using PrPC, the properly folded form of PrP, as a template. This process is associated with neuronal death and the clinical manifestation of prion‐based diseases. Unfortunately, little is known about the mechanisms that drive this process. Over the last decade, the theory that a nucleic acid, such as an RNA molecule, might be involved in the process of prion structural conversion has become more widely accepted; such a nucleic acid would act as a catalyst rather than encoding genetic information. Significant amounts of data regarding the interactions of PrP with nucleic acids have created a new foundation for understanding prion conversion and the transmission of prion diseases. Our knowledge has been enhanced by the characterization of a large group of RNA molecules known as non‐coding RNAs, which execute a series of important cellular functions, from transcriptional regulation to the modulation of neuroplasticity. The RNA‐binding properties of PrP along with the competition with other polyanions, such as glycosaminoglycans and nucleic acid aptamers, open new avenues for therapy. WIREs RNA 2012, 3:415–428. doi: 10.1002/wrna.118
Methods | 2011
Jerson L. Silva; Tuane C. R. G. Vieira; Mariana P. B. Gomes; Luciana P. Rangel; Sandra M.N. Scapin; Yraima Cordeiro
The concept that transmissible spongiform encephalopathies (TSEs) are caused only by proteins has changed the traditional paradigm that disease transmission is due solely to an agent that carries genetic information. The central hypothesis for prion diseases proposes that the conversion of a cellular prion protein (PrP(C)) into a misfolded, β-sheet-rich isoform (PrP(Sc)) accounts for the development of (TSE). There is substantial evidence that the infectious material consists chiefly of a protein, PrP(Sc), with no genomic coding material, unlike a virus particle, which has both. However, prions seem to have other partners that chaperone their activities in converting the PrP(C) into the disease-causing isoform. Nucleic acids (NAs) and glycosaminoglycans (GAGs) are the most probable accomplices of prion conversion. Here, we review the recent experimental approaches that have been employed to characterize the interaction of prion proteins with nucleic acids and glycosaminoglycans. A PrP recognizes many nucleic acids and GAGs with high affinities, and this seems to be related to a pathophysiological role for this interaction. A PrP binds nucleic acids and GAGs with structural selectivity, and some PrP:NA complexes can become proteinase K-resistant, undergoing amyloid oligomerization and conversion to a β-sheet-rich structure. These results are consistent with the hypothesis that endogenous polyanions (such as NAs and GAGs) may accelerate the rate of prion disease progression by acting as scaffolds or lattices that mediate the interaction between PrP(C) and PrP(Sc) molecules. In addition to a still-possible hypothesis that nucleic acids and GAGs, especially those from the host, may modulate the conversion, the recent structural characterization of the complexes has raised the possibility of developing new diagnostic and therapeutic strategies.
Frontiers in Bioscience | 2010
Jerson L. Silva; Mariana P. B. Gomes; Tuane C. R. G. Vieira; Yraima Cordeiro
Since the first description of prion diseases, great effort has been made toward comprehending this new paradigm in biology. Despite large advances in the field, many questions remain unanswered, especially concerning the conversion of PrP(C) into PrP(Sc). How this conformational transition evolves is a crucial problem that must be solved in order to attain further progress in therapeutics and prevention. Recent developments have indicated the requirement for partners of the prion protein in triggering the conversion. In the present review, we will explore the interaction of PrP with some of its most intriguing partners, such as sulfated glycans and nucleic acids. These molecules seem to play a dual role in prion biology and could be fundamental to explaining how prion diseases arise, as well as in the development of effective therapeutic approaches.
Journal of Chromatography A | 2015
Marcela Cristina de Moraes; Juliana B. O. Santos; Daniel Meira dos Anjos; Luciana P. Rangel; Tuane C. R. G. Vieira; Ruin Moaddel; Jerson L. Silva
Archive | 2019
Tuane C. R. G. Vieira; Jerson L. Silva