Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tudor I. Oprea is active.

Publication


Featured researches published by Tudor I. Oprea.


Angewandte Chemie | 1999

The Design of Leadlike Combinatorial Libraries

Simon J. Teague; Andrew M. Davis; Paul D. Leeson; Tudor I. Oprea

The optimization of low-potency leads into drugs is often accompanied by an increase in molecular weight (M(r)) and lipophilicity, as a consequence of affinity enhancement. Hits with affinity at µM levels discovered by screening leadlike libraries allow scope for this optimization process, as shown schematically by the distributions of M(r) for a leadlike library (1), oral drugs (2), and a typical combinatorial chemistry library (3). y=percentage with a particular molecular weight.


Annual Review of Physiology | 2008

Estrogen Signaling through the Transmembrane G Protein–Coupled Receptor GPR30

Eric R. Prossnitz; Jeffrey B. Arterburn; Harriet O. Smith; Tudor I. Oprea; Larry A. Sklar; Helen J. Hathaway

Steroids play an important role in the regulation of normal physiology and the treatment of disease. Steroid receptors have classically been described as ligand-activated transcription factors mediating long-term genomic effects in hormonally regulated tissues. It is now clear that steroids also mediate rapid signaling events traditionally associated with growth factor receptors and G protein-coupled receptors. Although evidence suggests that the classical steroid receptors are capable of mediating many of these events, more recent discoveries reveal the existence of transmembrane receptors capable of responding to steroids with cellular activation. One such receptor, GPR30, is a member of the G protein-coupled receptor superfamily and mediates estrogen-dependent kinase activation as well as transcriptional responses. In this review, we provide an overview of the evidence for the cellular and physiological actions of GPR30 in estrogen-dependent processes and discuss the relationship of GPR30 with classical estrogen receptors.


Journal of Endocrinology | 2007

Distribution and characterization of estrogen receptor G protein-coupled receptor 30 in the rat central nervous system.

Eugen Brailoiu; Siok L. Dun; G.C. Brailoiu; K. Mizuo; Larry A. Sklar; Tudor I. Oprea; Eric R. Prossnitz; Nae J. Dun

The G protein-coupled receptor 30 (GPR 30) has been identified as the non-genomic estrogen receptor, and G-1, the specific ligand for GPR30. With the use of a polyclonal antiserum directed against the human C-terminus of GPR30, immunohistochemical studies revealed GPR30-immunoreactivity (irGPR30) in the brain of adult male and non-pregnant female rats. A high density of irGPR30 was noted in the Islands of Calleja and striatum. In the hypothalamus, irGPR30 was detected in the paraventricular nucleus and supraoptic nucleus. The anterior and posterior pituitary contained numerous irGPR30 cells and terminal-like endings. Cells in the hippocampal formation as well as the substantia nigra were irGPR30. In the brainstem, irGPR30 cells were noted in the area postrema, nucleus of the solitary tract, and dorsal motor nucleus of the vagus; a cluster of cells were prominently labeled in the nucleus ambiguus. Tissue sections processed with pre-immune serum showed no irGPR30, affirming the specificity of the antiserum. G-1 (100 nM) caused a large increase of intracellular calcium concentrations [Ca(2+) ](i) in dissociated and cultured rat hypothalamic neurons, as assessed by microfluorometric Fura-2 imaging. The calcium response to a second application of G-1 showed a marked homologous desensitization. Our result shows a high expression of irGPR30 in the hypothalamic-pituitary axis, hippocampal formation, and brainstem autonomic nuclei; and the activation of GPR30 by G-1 is associated with a mobilization of calcium in dissociated and cultured rat hypothalamic neurons.


Cancer Research | 2007

G Protein–Coupled Receptor 30 (GPR30) Mediates Gene Expression Changes and Growth Response to 17β-Estradiol and Selective GPR30 Ligand G-1 in Ovarian Cancer Cells

Lidia Albanito; Antonio Madeo; Rosamaria Lappano; Adele Vivacqua; Vittoria Rago; Amalia Carpino; Tudor I. Oprea; Eric R. Prossnitz; Anna Maria Musti; Sebastiano Andò; Marcello Maggiolini

Estrogens play a crucial role in the development of ovarian tumors; however, the signal transduction pathways involved in hormone action are still poorly defined. The orphan G protein-coupled receptor 30 (GPR30) mediates the nongenomic signaling of 17beta-estradiol (E2) in a variety of estrogen-sensitive cancer cells through activation of the epidermal growth factor receptor (EGFR) pathway. Whether estrogen receptor alpha (ERalpha) also contributes to GPR30/EGFR signaling is less understood. Here, we show that, in ERalpha-positive BG-1 ovarian cancer cells, both E2 and the GPR30-selective ligand G-1 induced c-fos expression and estrogen-responsive element (ERE)-independent activity of a c-fos reporter gene, whereas only E2 stimulated an ERE-responsive reporter gene, indicating that GPR30 signaling does not activate ERalpha-mediated transcription. Similarly, both ligands up-regulated cyclin D1, cyclin E, and cyclin A, whereas only E2 enhanced progesterone receptor expression. Moreover, both GPR30 and ERalpha expression are required for c-fos stimulation and extracellular signal-regulated kinase (ERK) activation in response to either E2 or G-1. Inhibition of the EGFR transduction pathway inhibited c-fos stimulation and ERK activation by either ligand, suggesting that in ovarian cancer cells GPR30/EGFR signaling relays on ERalpha expression. Interestingly, we show that both GPR30 and ERalpha expression along with active EGFR signaling are required for E2-stimulated and G-1-stimulated proliferation of ovarian cancer cells. Because G-1 was able to induce both c-fos expression and proliferation in the ERalpha-negative/GPR30-positive SKBR3 breast cancer cells, the requirement for ERalpha expression in GPR30/EGFR signaling may depend on the specific cellular context of different tumor types.


Nature Chemical Biology | 2009

In vivo Effects of a GPR30 Antagonist

Megan K. Dennis; Ritwik Burai; Chinnasamy Ramesh; Whitney K. Petrie; Sara N. Alcon; Tapan K. Nayak; Cristian G. Bologa; Andrei Leitao; Eugen Brailoiu; Elena Deliu; Nae J. Dun; Larry A. Sklar; Helen J. Hathaway; Jeffrey B. Arterburn; Tudor I. Oprea; Eric R. Prossnitz

Estrogen is central to many physiological processes throughout the human body. We have previously shown that the G protein-coupled receptor GPR30/GPER, in addition to classical nuclear estrogen receptors (ERα/β), activates cellular signaling pathways in response to estrogen. In order to distinguish between the actions of classical estrogen receptors and GPR30, we have previously characterized a selective agonist of GPR30, G-1 (1). To complement the pharmacological properties of G-1, we sought to identify an antagonist of GPR30 that displays similar selectivity against the classical estrogen receptors. Here we describe the identification and characterization of a G-1 analog, G15 (2) that binds to GPR30 with high affinity and acts as an antagonist of estrogen signaling through GPR30. In vivo administration of G15 reveals that GPR30 contributes to both uterine and neurological responses initiated by estrogen. The identification of this antagonist will accelerate the evaluation of the roles of GPR30 in human physiology.


Aaps Journal | 2011

BDDCS Applied to Over 900 Drugs

Leslie Z. Benet; Fabio Broccatelli; Tudor I. Oprea

Here, we compile the Biopharmaceutics Drug Disposition Classification System (BDDCS) classification for 927 drugs, which include 30 active metabolites. Of the 897 parent drugs, 78.8% (707) are administered orally. Where the lowest measured solubility is found, this value is reported for 72.7% (513) of these orally administered drugs and a dose number is recorded. The measured values are reported for percent excreted unchanged in urine, LogP, and LogD7.4 when available. For all 927 compounds, the in silico parameters for predicted Log solubility in water, calculated LogP, polar surface area, and the number of hydrogen bond acceptors and hydrogen bond donors for the active moiety are also provided, thereby allowing comparison analyses for both in silico and experimentally measured values. We discuss the potential use of BDDCS to estimate the disposition characteristics of novel chemicals (new molecular entities) in the early stages of drug discovery and development. Transporter effects in the intestine and the liver are not clinically relevant for BDDCS class 1 drugs, but potentially can have a high impact for class 2 (efflux in the gut, and efflux and uptake in the liver) and class 3 (uptake and efflux in both gut and liver) drugs. A combination of high dose and low solubility is likely to cause BDDCS class 4 to be underpopulated in terms of approved drugs (N = 53 compared with over 200 each in classes 1–3). The influence of several measured and in silico parameters in the process of BDDCS category assignment is discussed in detail.


Nature Reviews Drug Discovery | 2017

A comprehensive map of molecular drug targets

Rita Santos; Oleg Ursu; Anna Gaulton; Bento Ap; Donadi Rs; Cristian G. Bologa; Anna Karlsson; Bissan Al-Lazikani; Anne Hersey; Tudor I. Oprea; John P. Overington

The success of mechanism-based drug discovery depends on the definition of the drug target. This definition becomes even more important as we try to link drug response to genetic variation, understand stratified clinical efficacy and safety, rationalize the differences between drugs in the same therapeutic class and predict drug utility in patient subgroups. However, drug targets are often poorly defined in the literature, both for launched drugs and for potential therapeutic agents in discovery and development. Here, we present an updated comprehensive map of molecular targets of approved drugs. We curate a total of 893 human and pathogen-derived biomolecules through which 1,578 US FDA-approved drugs act. These biomolecules include 667 human-genome-derived proteins targeted by drugs for human disease. Analysis of these drug targets indicates the continued dominance of privileged target families across disease areas, but also the growth of novel first-in-class mechanisms, particularly in oncology. We explore the relationships between bioactivity class and clinical success, as well as the presence of orthologues between human and animal models and between pathogen and human genomes. Through the collaboration of three independent teams, we highlight some of the ongoing challenges in accurately defining the targets of molecular therapeutics and present conventions for deconvoluting the complexities of molecular pharmacology and drug efficacy.


Molecular Diversity | 2002

Current trends in lead discovery: Are we looking for the appropriate properties?

Tudor I. Oprea

The new drug discovery paradigm is based on high-throughput technologies, both with respect to synthesis and screening. The progression HTS hits → lead series → candidate drug → marketed drug appears to indicate that the probability of reaching launched status is one in a million. This has shifted the focus from good quality candidate drugs to good quality leads. We examined the current trends in lead discovery by comparing MW (molecular weight), LogP (octanol/water partition coefficient, estimated by Kowwin [17]) and LogSw (intrinsic water solubility, estimated by Wskowwin [18]) for the following categories: 62 leads and 75 drugs [11]; compounds in the development phase (I, II, III and launched), as indexed in MDDR; and compounds indexed in medicinal chemistry journals [ref. 20], categorized according to their biological activity. Comparing the distribution of the above properties, the 62 lead structures show the lowest median with respect to MW (smaller) and LogP (less hydrophobic), and the highest median with respect to LogSw (more soluble). By contrast, over 50% of the medicinal chemistry compounds with activities above 1 nanomolar have MW > 425, LogP > 4.25 and LogSw < -4.75, indicating that the reported active compounds are larger, more hydrophobic and less soluble when compared to time-tested quality leads. In the MDDR set, a progressive constraint to reduce MW and LogP, and to increase LogSw, can be observed when examining trends in the developmental sequence: phase I, II, III and launched drugs. These trends indicate that other properties besides binding affinity, e.g., solubility and hydrophobicity, need to be considered when choosing the appropriate leads.


Journal of Medicinal Chemistry | 2009

Novel chemical space exploration via natural products.

Josefin Rosén; Johan Gottfries; Sorel Muresan; Anders Backlund; Tudor I. Oprea

Natural products (NPs) are a rich source of novel compound classes and new drugs. In the present study we have used the chemical space navigation tool ChemGPS-NP to evaluate the chemical space occupancy by NPs and bioactive medicinal chemistry compounds from the database WOMBAT. The two sets differ notably in coverage of chemical space, and tangible leadlike NPs were found to cover regions of chemical space that lack representation in WOMBAT. Property based similarity calculations were performed to identify NP neighbors of approved drugs. Several of the NPs revealed by this method were confirmed to exhibit the same activity as their drug neighbors. The identification of leads from a NP starting point may prove a useful strategy for drug discovery in the search for novel leads with unique properties.


The Journal of Steroid Biochemistry and Molecular Biology | 2011

Identification of a GPER/GPR30 antagonist with improved estrogen receptor counterselectivity

Megan K. Dennis; Angela S. Field; Ritwik Burai; Chinnasamy Ramesh; Whitney K. Petrie; Cristian G. Bologa; Tudor I. Oprea; Yuri Yamaguchi; Shin-ichi Hayashi; S. Larry A. Sklar; Helen J. Hathaway; Jeffrey B. Arterburn; Eric R. Prossnitz

GPER/GPR30 is a seven-transmembrane G protein-coupled estrogen receptor that regulates many aspects of mammalian biology and physiology. We have previously described both a GPER-selective agonist G-1 and antagonist G15 based on a tetrahydro-3H-cyclopenta[c]quinoline scaffold. The antagonist lacks an ethanone moiety that likely forms important hydrogen bonds involved in receptor activation. Computational docking studies suggested that the lack of the ethanone substituent in G15 could minimize key steric conflicts, present in G-1, that limit binding within the ERα ligand binding pocket. In this report, we identify low-affinity cross-reactivity of the GPER antagonist G15 to the classical estrogen receptor ERα. To generate an antagonist with enhanced selectivity, we therefore synthesized an isosteric G-1 derivative, G36, containing an isopropyl moiety in place of the ethanone moiety. We demonstrate that G36 shows decreased binding and activation of ERα, while maintaining its antagonist profile towards GPER. G36 selectively inhibits estrogen-mediated activation of PI3K by GPER but not ERα. It also inhibits estrogen- and G-1-mediated calcium mobilization as well as ERK1/2 activation, with no effect on EGF-mediated ERK1/2 activation. Similar to G15, G36 inhibits estrogen- and G-1-stimulated proliferation of uterine epithelial cells in vivo. The identification of G36 as a GPER antagonist with improved ER counterselectivity represents a significant step towards the development of new highly selective therapeutics for cancer and other diseases.

Collaboration


Dive into the Tudor I. Oprea's collaboration.

Top Co-Authors

Avatar

Larry A. Sklar

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Oleg Ursu

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Waller

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar

Susan M. Young

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar

Mark B. Carter

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge