Tuhina Mukherjee
Indian Institute of Technology Delhi
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tuhina Mukherjee.
Advances in Nonlinear Analysis | 2017
Jacques Giacomoni; Tuhina Mukherjee; Konijeti Sreenadh
Abstract In this article, we study the following fractional elliptic equation with critical growth and singular nonlinearity: ( - Δ ) s u = u - q + λ u 2 s * - 1 , u > 0 in Ω , u = 0 in ℝ n ∖ Ω , (-\Delta)^{s}u=u^{-q}+\lambda u^{{2^{*}_{s}}-1},\qquad u>0\quad\text{in }% \Omega,\qquad u=0\quad\text{in }\mathbb{R}^{n}\setminus\Omega, where Ω is a bounded domain in ℝ n {\mathbb{R}^{n}} with smooth boundary ∂ Ω {\partial\Omega} , n > 2 s {n>2s} , s ∈ ( 0 , 1 ) {s\in(0,1)} , λ > 0 {\lambda>0} , q > 0 {q>0} and 2 s * = 2 n n - 2 s {2^{*}_{s}=\frac{2n}{n-2s}} . We use variational methods to show the existence and multiplicity of positive solutions with respect to the parameter λ.
Nodea-nonlinear Differential Equations and Applications | 2017
Tuhina Mukherjee; K. Sreenadh
In this article, we study the Brezis–Nirenberg type problem of nonlinear Choquard equation involving the fractional Laplacian
Advances in Nonlinear Analysis | 2016
Tuhina Mukherjee; Konijeti Sreenadh
Complex Variables and Elliptic Equations | 2017
Tuhina Mukherjee; Konijeti Sreenadh
\begin{aligned} (-\Delta )^s u = \left( \int _{\Omega }\frac{|u|^{2^*_{\mu ,s}}}{|x-y|^{\mu }}\mathrm {d}y \right) |u|^{2^*_{\mu ,s}-2}u +\lambda u \; \text {in } \Omega , \quad {u=0 \; \text {in}\; \mathbb R^n{\setminus }\Omega }, \end{aligned}
Topological Methods in Nonlinear Analysis | 2018
Tuhina Mukherjee; Konijeti Sreenadh
Advanced Nonlinear Studies | 2018
Jacques Giacomoni; Tuhina Mukherjee; Konijeti Sreenadh
(-Δ)su=∫Ω|u|2μ,s∗|x-y|μdy|u|2μ,s∗-2u+λuinΩ,u=0inRn\Ω,where
Archive | 2016
Tuhina Mukherjee; Konijeti Sreenadh
arXiv: Analysis of PDEs | 2019
Jacques Giacomoni; Tuhina Mukherjee; Konijeti Sreenadh
\Omega
Journal of Mathematical Analysis and Applications | 2018
Jacques Giacomoni; Tuhina Mukherjee; K. Sreenadh
arXiv: Analysis of PDEs | 2018
Jacques Giacomoni; Tuhina Mukherjee; K. Sreenadh
Ω is a bounded domain in