Tulio Guadalupe
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tulio Guadalupe.
NeuroImage | 2017
Paul M. Thompson; Ole A. Andreassen; Alejandro Arias-Vasquez; Carrie E. Bearden; Premika S.W. Boedhoe; Rachel M. Brouwer; Randy L. Buckner; Jan K. Buitelaar; Kazima Bulayeva; Dara M. Cannon; Ronald A. Cohen; Patricia J. Conrod; Anders M. Dale; Ian J. Deary; Emily L. Dennis; Marcel A. de Reus; Sylvane Desrivières; Danai Dima; Gary Donohoe; Simon E. Fisher; Jean-Paul Fouche; Clyde Francks; Sophia Frangou; Barbara Franke; Habib Ganjgahi; Hugh Garavan; David C. Glahn; Hans Joergen Grabe; Tulio Guadalupe; Boris A. Gutman
In this review, we discuss recent work by the ENIGMA Consortium (http://enigma.ini.usc.edu) – a global alliance of over 500 scientists spread across 200 institutions in 35 countries collectively analyzing brain imaging, clinical, and genetic data. Initially formed to detect genetic influences on brain measures, ENIGMA has grown to over 30 working groups studying 12 major brain diseases by pooling and comparing brain data. In some of the largest neuroimaging studies to date – of schizophrenia and major depression – ENIGMA has found replicable disease effects on the brain that are consistent worldwide, as well as factors that modulate disease effects. In partnership with other consortia including ADNI, CHARGE, IMAGEN and others1, ENIGMAs genomic screens – now numbering over 30,000 MRI scans – have revealed at least 8 genetic loci that affect brain volumes. Downstream of gene findings, ENIGMA has revealed how these individual variants – and genetic variants in general – may affect both the brain and risk for a range of diseases. The ENIGMA consortium is discovering factors that consistently affect brain structure and function that will serve as future predictors linking individual brain scans and genomic data. It is generating vast pools of normative data on brain measures – from tens of thousands of people – that may help detect deviations from normal development or aging in specific groups of subjects. We discuss challenges and opportunities in applying these predictors to individual subjects and new cohorts, as well as lessons we have learned in ENIGMAs efforts so far.
Frontiers in Psychology | 2014
Tulio Guadalupe; Roel M. Willems; Marcel P. Zwiers; Alejandro Arias Vasquez; Martine Hoogman; Peter Hagoort; Guillén Fernández; Jan K. Buitelaar; Barbara Franke; Simon E. Fisher; Clyde Francks
The left and right sides of the human brain are specialized for different kinds of information processing, and much of our cognition is lateralized to an extent toward one side or the other. Handedness is a reflection of nervous system lateralization. Roughly ten percent of people are mixed- or left-handed, and they show an elevated rate of reductions or reversals of some cerebral functional asymmetries compared to right-handers. Brain anatomical correlates of left-handedness have also been suggested. However, the relationships of left-handedness to brain structure and function remain far from clear. We carried out a comprehensive analysis of cortical surface area differences between 106 left-handed subjects and 1960 right-handed subjects, measured using an automated method of regional parcellation (FreeSurfer, Destrieux atlas). This is the largest study sample that has so far been used in relation to this issue. No individual cortical region showed an association with left-handedness that survived statistical correction for multiple testing, although there was a nominally significant association with the surface area of a previously implicated region: the left precentral sulcus. Identifying brain structural correlates of handedness may prove useful for genetic studies of cerebral asymmetries, as well as providing new avenues for the study of relations between handedness, cerebral lateralization and cognition.
PLOS ONE | 2012
Anita Eerland; Tulio Guadalupe; Ingmar H.A. Franken; Rolf A. Zwaan
Approach and avoidance are two behavioral responses that make people tend to approach positive and avoid negative situations. This study examines whether postural behavior is influenced by the affective state of pictures. While standing on the Wii™ Balance Board, participants viewed pleasant, neutral, and unpleasant pictures (passively viewing phase). Then they had to move their body to the left or the right (lateral movement phase) to make the next picture appear. We recorded movements in the anterior-posterior direction to examine approach and avoidant behavior. During passively viewing, people approached pleasant pictures. They avoided unpleasant ones while they made a lateral movement. These findings provide support for the idea that we tend to approach positive and avoid negative situations.
Human Brain Mapping | 2014
Tulio Guadalupe; Marcel P. Zwiers; Alexander Teumer; Katharina Wittfeld; Alejandro Arias Vasquez; Martine Hoogman; Peter Hagoort; Guillén Fernández; Jan K. Buitelaar; Katrin Hegenscheid; Henry Völzke; Barbara Franke; Simon E. Fisher; Hans J. Grabe; Clyde Francks
Functional and anatomical asymmetries are prevalent features of the human brain, linked to gender, handedness, and cognition. However, little is known about the neurodevelopmental processes involved. In zebrafish, asymmetries arise in the diencephalon before extending within the central nervous system. We aimed to identify genes involved in the development of subtle, left‐right volumetric asymmetries of human subcortical structures using large datasets. We first tested the feasibility of measuring left‐right volume differences in such large‐scale samples, as assessed by two automated methods of subcortical segmentation (FSL|FIRST and FreeSurfer), using data from 235 subjects who had undergone MRI twice. We tested the agreement between the first and second scan, and the agreement between the segmentation methods, for measures of bilateral volumes of six subcortical structures and the hippocampus, and their volumetric asymmetries. We also tested whether there were biases introduced by left‐right differences in the regional atlases used by the methods, by analyzing left‐right flipped images. While many bilateral volumes were measured well (scan‐rescan r = 0.6–0.8), most asymmetries, with the exception of the caudate nucleus, showed lower repeatabilites. We meta‐analyzed genome‐wide association scan results for caudate nucleus asymmetry in a combined sample of 3,028 adult subjects but did not detect associations at genome‐wide significance (P < 5 × 10−8). There was no enrichment of genetic association in genes involved in left‐right patterning of the viscera. Our results provide important information for researchers who are currently aiming to carry out large‐scale genome‐wide studies of subcortical and hippocampal volumes, and their asymmetries. Hum Brain Mapp 35:3277–3289, 2014.
Psychological Science | 2011
Anita Eerland; Tulio Guadalupe; Rolf A. Zwaan
In two experiments, we investigated whether body posture influences people’s estimation of quantities. According to the mental-number-line theory, people mentally represent numbers along a line with smaller numbers on the left and larger numbers on the right. We hypothesized that surreptitiously making people lean to the right or to the left would affect their quantitative estimates. Participants answered estimation questions while standing on a Wii Balance Board. Posture was manipulated within subjects so that participants answered some questions while they leaned slightly to the left, some questions while they leaned slightly to the right, and some questions while they stood upright. Crucially, participants were not aware of this manipulation. Estimates were significantly smaller when participants leaned to the left than when they leaned to the right.
Frontiers in Human Neuroscience | 2014
Martine Hoogman; Tulio Guadalupe; Marcel P. Zwiers; Patricia Klarenbeek; Clyde Francks; Simon E. Fisher
The FOXP2 transcription factor is one of the most well-known genes to have been implicated in developmental speech and language disorders. Rare mutations disrupting the function of this gene have been described in different families and cases. In a large three-generation family carrying a missense mutation, neuroimaging studies revealed significant effects on brain structure and function, most notably in the inferior frontal gyrus, caudate nucleus, and cerebellum. After the identification of rare disruptive FOXP2 variants impacting on brain structure, several reports proposed that common variants at this locus may also have detectable effects on the brain, extending beyond disorder into normal phenotypic variation. These neuroimaging genetics studies used groups of between 14 and 96 participants. The current study assessed effects of common FOXP2 variants on neuroanatomy using voxel-based morphometry (VBM) and volumetric techniques in a sample of >1300 people from the general population. In a first targeted stage we analyzed single nucleotide polymorphisms (SNPs) claimed to have effects in prior smaller studies (rs2253478, rs12533005, rs2396753, rs6980093, rs7784315, rs17137124, rs10230558, rs7782412, rs1456031), beginning with regions proposed in the relevant papers, then assessing impact across the entire brain. In the second gene-wide stage, we tested all common FOXP2 variation, focusing on volumetry of those regions most strongly implicated from analyses of rare disruptive mutations. Despite using a sample that is more than 10 times that used for prior studies of common FOXP2 variation, we found no evidence for effects of SNPs on variability in neuroanatomy in the general population. Thus, the impact of this gene on brain structure may be largely limited to extreme cases of rare disruptive alleles. Alternatively, effects of common variants at this gene exist but are too subtle to be detected with standard volumetric techniques.
Genes, Brain and Behavior | 2014
Danchao Cai; Hubert M. Fonteijn; Tulio Guadalupe; Marcel P. Zwiers; Katharina Wittfeld; Alexander Teumer; Martine Hoogman; Alejandro Arias-Vasquez; Yufang Yang; Jan K. Buitelaar; Guillén Fernández; Han G. Brunner; H. van Bokhoven; Barbara Franke; K. Hegenscheid; Georg Homuth; Simon E. Fisher; H. J. Grabe; Clyde Francks; Peter Hagoort
Heschls gyrus (HG) is a core region of the auditory cortex whose morphology is highly variable across individuals. This variability has been linked to sound perception ability in both speech and music domains. Previous studies show that variations in morphological features of HG, such as cortical surface area and thickness, are heritable. To identify genetic variants that affect HG morphology, we conducted a genome‐wide association scan (GWAS) meta‐analysis in 3054 healthy individuals using HG surface area and thickness as quantitative traits. None of the single nucleotide polymorphisms (SNPs) showed association P values that would survive correction for multiple testing over the genome. The most significant association was found between right HG area and SNP rs72932726 close to gene DCBLD2 (3q12.1; P = 2.77 × 10−7). This SNP was also associated with other regions involved in speech processing. The SNP rs333332 within gene KALRN (3q21.2; P = 2.27 × 10−6) and rs143000161 near gene COBLL1 (2q24.3; P = 2.40 × 10−6) were associated with the area and thickness of left HG, respectively. Both genes are involved in the development of the nervous system. The SNP rs7062395 close to the X‐linked deafness gene POU3F4 was associated with right HG thickness (Xq21.1; P = 2.38 × 10−6). This is the first molecular genetic analysis of variability in HG morphology.
PLOS ONE | 2012
Rolf A. Zwaan; Nathan Van der Stoep; Tulio Guadalupe; Samantha Bouwmeester
How does language comprehension interact with motor activity? We investigated the conditions under which comprehending an action sentence affects peoples balance. We performed two experiments to assess whether sentences describing forward or backward movement modulate the lateral movements made by subjects who made sensibility judgments about the sentences. In one experiment subjects were standing on a balance board and in the other they were seated on a balance board that was mounted on a chair. This allowed us to investigate whether the action compatibility effect (ACE) is robust and persists in the face of salient incompatibilities between sentence content and subject movement. Growth-curve analysis of the movement trajectories produced by the subjects in response to the sentences suggests that the ACE is indeed robust. Sentence content influenced movement trajectory despite salient inconsistencies between implied and actual movement. These results are interpreted in the context of the current discussion of embodied, or grounded, language comprehension and meaning representation.
Brain Behavior and Immunity | 2015
Nicolas Brucato; Tulio Guadalupe; Barbara Franke; Simon E. Fisher; Clyde Francks
Genes of the Major Histocompatibility Complex (MHC) have recently been shown to have neuronal functions in the thalamus and hippocampus. Common genetic variants in the Human Leukocyte Antigens (HLA) region, human homologue of the MHC locus, are associated with small effects on susceptibility to schizophrenia, while volumetric changes of the thalamus and hippocampus have also been linked to schizophrenia. We therefore investigated whether common variants of the HLA would affect volumetric variation of the thalamus and hippocampus. We analysed thalamus and hippocampus volumes, as measured using structural magnetic resonance imaging, in 1.265 healthy participants. These participants had also been genotyped using genome-wide single nucleotide polymorphism (SNP) arrays. We imputed genotypes for single nucleotide polymorphisms at high density across the HLA locus, as well as HLA allotypes and HLA amino acids, by use of a reference population dataset that was specifically targeted to the HLA region. We detected a significant association of the SNP rs17194174 with thalamus volume (nominal P=0.0000017, corrected P=0.0039), as well as additional SNPs within the same region of linkage disequilibrium. This effect was largely lateralized to the left thalamus and is localized within a genomic region previously associated with schizophrenia. The associated SNPs are also clustered within a potential regulatory element, and a region of linkage disequilibrium that spans genes expressed in the thalamus, including HLA-A. Our data indicate that genetic variation within the HLA region influences the volume and asymmetry of the human thalamus. The molecular mechanisms underlying this association may relate to HLA influences on susceptibility to schizophrenia.
American Journal of Medical Genetics | 2015
Marieke Klein; Monique van der Voet; Benjamin Harich; Kimm J. E. van Hulzen; A. Marten H. Onnink; Martine Hoogman; Tulio Guadalupe; Marcel P. Zwiers; Johanne M. Groothuismink; Alicia Verberkt; Bonnie Nijhof; Anna Castells-Nobau; Stephen V. Faraone; Jan K. Buitelaar; Annette Schenck; Alejandro Arias-Vasquez; Barbara Franke
Attention‐Deficit/Hyperactivity Disorder (ADHD) is a common neuropsychiatric disorder with a complex genetic background. The G protein‐coupled receptor kinase interacting ArfGAP 1 (GIT1) gene was previously associated with ADHD. We aimed at replicating the association of GIT1 with ADHD and investigated its role in cognitive and brain phenotypes. Gene‐wide and single variant association analyses for GIT1 were performed for three cohorts: (1) the ADHD meta‐analysis data set of the Psychiatric Genomics Consortium (PGC, N = 19,210), (2) the Dutch cohort of the International Multicentre persistent ADHD CollaboraTion (IMpACT‐NL, N = 225), and (3) the Brain Imaging Genetics cohort (BIG, N = 1,300). Furthermore, functionality of the rs550818 variant as an expression quantitative trait locus (eQTL) for GIT1 was assessed in human blood samples. By using Drosophila melanogaster as a biological model system, we manipulated Git expression according to the outcome of the expression result and studied the effect of Git knockdown on neuronal morphology and locomotor activity. Association of rs550818 with ADHD was not confirmed, nor did a combination of variants in GIT1 show association with ADHD or any related measures in either of the investigated cohorts. However, the rs550818 risk‐genotype did reduce GIT1 expression level. Git knockdown in Drosophila caused abnormal synapse and dendrite morphology, but did not affect locomotor activity. In summary, we could not confirm GIT1 as an ADHD candidate gene, while rs550818 was found to be an eQTL for GIT1. Despite GIT1s regulation of neuronal morphology, alterations in gene expression do not appear to have ADHD‐related behavioral consequences.