Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tullio Florio is active.

Publication


Featured researches published by Tullio Florio.


Frontiers in Neuroendocrinology | 2001

Chemokines and their receptors in the central nervous system.

Adriana Bajetto; Rudy Bonavia; Simone Barbero; Tullio Florio; Gennaro Schettini

Chemokines are a family of proteins associated with the trafficking of leukocytes in physiological immune surveillance and inflammatory cell recruitment in host defence. They are classified into four classes based on the positions of key cystiene residues: C, CC, CXC, and CX3C. Chemokines act through both specific and shared receptors that all belong to the superfamily of G-protein-coupled receptors. Besides their well-established role in the immune system, several recent reports have demonstrated that these proteins also play a role in the central nervous system (CNS). In the CNS, chemokines are constitutively expressed by microglial cells, astrocytes, and neurons, and their expression can be increased after induction with inflammatory mediators. Constitutive expression of chemokines and chemokine receptors has been observed in both developing and adult brains, and the role played by these proteins in the normal brain is the object of intense study by many research groups. Chemokines are involved in brain development and in the maintenance of normal brain homeostasis; these proteins play a role in the migration, differentiation, and proliferation of glial and neuronal cells. The chemokine stromal cell-derived factor 1 and its receptor, CXCR4, are essential for life during development, and this ligand-receptor pair has been shown to have a fundamental role in neuron migration during cerebellar formation. Chemokine and chemokine receptor expression can be increased by inflammatory mediators, and this has in turn been associated with several acute and chronic inflammatory conditions. In the CNS, chemokines play an essential role in neuroinflammation as mediators of leukocyte infiltration. Their overexpression has been implicated in different neurological disorders, such as multiple sclerosis, trauma, stroke, Alzheimers disease, tumor progression, and acquired immunodeficiency syndrome-associated dementia. An emerging area of interest for chemokine action is represented by the communication between the neuroendocrine and the immune system. Chemokines have hormone-like actions, specifically regulating the key host physiopathological responses of fever and appetite. It is now evident that chemokines and their receptors represent a plurifunctional family of proteins whose actions on the CNS are not restricted to neuroinflammation. These molecules constitute crucial regulators of cellular communication in physiological and developmental processes.


Journal of Neurochemistry | 2002

Glial and neuronal cells express functional chemokine receptor CXCR4 and its natural ligand stromal cell-derived factor 1

Adriana Bajetto; Rudy Bonavia; Simone Barbero; Patrizia Piccioli; Alfredo Costa; Tullio Florio; Gennaro Schettini

Abstract : Chemokines are a family of proteins that chemoattract and activate cells by interacting with specific receptors on the surface of their targets. The chemokine stromal cell‐derived factor 1, (SDF1), binds to the seventransmembrane G protein‐coupled CXCR4 receptor and acts to modulate cell migration, differentiation, and proliferation. CXCR4 and SDF1 are reported to be expressed in various tissues including brain. Here we show that SDF1 and CXCR4 are expressed in cultured cortical type I rat astrocytes, cortical neurons, and cerebellar granule cells. In cortical astrocytes, prolonged treatment with lipopolysaccharide induced an increase of SDF1 expression and a down‐regulation of CXCR4, whereas treatment with phorbol esters did not affect SDF1 expression and down‐modulated CXCR4 receptor expression. We also demonstrated the ability of human SDF1α (hSDF1α) to increase the intracellular calcium level in cultured astrocytes and cortical neurons, whereas in the same conditions, cerebellar granule cells did not modify their intracellular calcium concentration. Furthermore, in cortical astrocytes, the simultaneous treatment of hSDF1α with the HIV‐1 capside glycoprotein gp120 inhibits the cyclic AMP formation induced by forskolin treatment.


Cancer Research | 2006

Octreotide, a Somatostatin Analogue, Mediates Its Antiproliferative Action in Pituitary Tumor Cells by Altering Phosphatidylinositol 3-Kinase Signaling and Inducing Zac1 Expression

Marily Theodoropoulou; Jing Zhang; Sandra Laupheimer; Marcelo Paez-Pereda; Christophe Erneux; Tullio Florio; Uberto Pagotto; Günter K. Stalla

Somatostatin limits cell growth by inhibiting the proliferative activity of growth factor receptors. In this study, it is shown that in pituitary tumor cells, the somatostatin analogue octreotide produces its antiproliferative action by inducing the expression the tumor suppressor gene Zac1. ZAC/Zac1 induces cell cycle arrest and apoptosis and is highly expressed in normal pituitary, mammary, and ovarian glands but is down-regulated in pituitary, breast, and ovarian tumors. Knocking down Zac1 by RNA interference abolished the antiproliferative effect of octreotide in pituitary tumor cells, indicating that Zac1 is necessary for the action of octreotide. The effect of octreotide on Zac1 expression was pertussis toxin sensitive and was abolished after transfection with a dominant negative vector for SHP-1. Zac1 is a target of the phosphatidylinositol 3-kinase (PI3K) survival pathway. Octreotide treatment decreased the tyrosine phosphorylation levels of the PI3K regulatory subunit p85, induced dephosphorylation of phosphoinositide-dependent kinase 1 (PDK1) and Akt, and activated glycogen synthase kinase 3beta (GSKbeta). Therefore, in pituitary tumor cells, somatostatin analogues produce their antiproliferative action by acting on the PI3K/Akt signaling pathway and increasing Zac1 gene expression.


Neurochemistry International | 2006

Expression of CXC chemokine receptors 1-5 and their ligands in human glioma tissues : Role of CXCR4 and SDF1 in glioma cell proliferation and migration

Adriana Bajetto; Federica Barbieri; Alessandra Dorcaratto; Simone Barbero; Antonio Daga; Carola Porcile; Jean Louis Ravetti; Gianluigi Zona; Renato Spaziante; Giorgio Corte; Gennaro Schettini; Tullio Florio

Chemokines have been involved in cellular processes associated to malignant transformation such as proliferation, migration and angiogenesis. The expression of five CXC chemokine receptors and their main ligands was analysed by RT-PCR in 31 human astrocytic neoplasms. The mRNAs for all the receptors analysed were identified in a high percentage of tumours, while their ligands showed lower expression. CXCR4 and SDF1 were the most frequently mRNA identified (29/31 and 13/31 of the gliomas studied, respectively). Thus, we further analysed the cell localization of CXCR4 and SDF1 in immunohistochemistry experiments. We show a marked co-localization of CXCR4 and SDF1 in tumour cells, mainly evident in psudolpalisade and microcystic degeneration areas and in the vascular endothelium. In addition, hSDF1alpha induced a significant increase of DNA synthesis in primary human glioblastoma cell cultures and chemotaxis in a glioblastoma cell line. These results provide evidence of the expression of multiple CXC chemokines and their receptors in brain tumours and that in particular CXCR4 and SDF1 sustain proliferation and migration of glioma cells to promote malignant progression.


The FASEB Journal | 1999

Somatostatin controls Kaposi’s sarcoma tumor growth through inhibition of angiogenesis

Adriana Albini; Tullio Florio; D. Giunciuglio; L. Masiello; S. Carlone; A. Corsaro; S. Thellung; T. Cai; Douglas M. Noonan; G. Schettini

Somatostatin and its analogs are active in the inhibition of SST receptor‐positive endocrine neoplasms, but their activity and mechanism in nonendocrine tumors is not clear. Somatostatin potently inhibited growth of a Kaposis sarcoma xenograft in nude mice, yet in vitro the tumor cells did not express any known somatostatin receptors and were not growth inhibited by somatostatin. Histological examination revealed limited vascularization in the somatostatin‐treated tumors as compared with the controls. Somatostatin was a potent inhibitor of angiogenesis in an in vivo assay. In vitro, somatostatin inhibited endothelial cell growth and invasion. Migration of monocytes, important mediators of the angiogenic cascade, was also inhibited by somatostatin. Both cells types expressed somatostatin receptor mRNAs. These data demonstrate that somatostatin is a potent antitumor angiogenesis compound directly affecting both endothelial and monocytic cells. The debated function of somatostatin in tumor treatment and the design of therapeutic protocols should be reexamined considering these data.—Albini, A., Florio, T., Giunciuglio, D., Masiello, L., Carlone, S., Corsaro, A., Thellung, S., Cai, T., Noonan, D. M., Schettini, G. Somatostatin controls Kaposis sarcoma tumor growth through inhibition of angiogenesis. FASEB J. 13, 647–655 (1999)


Journal of Biological Chemistry | 2009

Different Response of Human Glioma Tumor-initiating Cells to Epidermal Growth Factor Receptor Kinase Inhibitors

Fabrizio Griffero; Antonio Daga; Daniela Marubbi; Maria Cristina Capra; Alice Melotti; Alessandra Pattarozzi; Monica Gatti; Adriana Bajetto; Carola Porcile; Federica Barbieri; Roberto E. Favoni; Michele Lo Casto; Gianluigi Zona; Renato Spaziante; Tullio Florio; Giorgio Corte

Because a subpopulation of cancer stem cells (tumor-initiating cells, TICs) is believed to be responsible for the development, progression, and recurrence of many tumors, we evaluated the in vitro sensitivity of human glioma TICs to epidermal growth factor receptor (EGFR) kinase inhibitors (erlotinib and gefitinib) and possible molecular determinants for their effects. Cells isolated from seven glioblastomas (GBM 1-7) and grown using neural stem cell permissive conditions were characterized for in vivo tumorigenicity, expression of tumor stem cell markers (CD133, nestin), and multilineage differentiation properties, confirming that these cultures are enriched in TICs. TIC cultures were challenged with increasing concentrations of erlotinib and gefitinib, and their survival was evaluated after 1-4 days. In most cases, a time- and concentration-dependent cell death was observed, although GBM 2 was completely insensitive to both drugs, and GBM 7 was responsive only to the highest concentrations tested. Using a radioligand binding assay, we show that all GBM TICs express EGFR. Erlotinib and gefitinib inhibited EGFR and ERK1/2 phosphorylation/activation in all GBMs, irrespective of the antiproliferative response observed. However, under basal conditions GBM 2 showed a high Akt phosphorylation that was completely insensitive to both drugs, whereas GBM 7 was completely insensitive to gefitinib, and Akt inactivation occurred only for the highest erlotinib concentration tested, showing a precise relationship with the antiproliferative effects of the drug. Interestingly, in GBM 2, phosphatase and tensin homolog expression was significantly down-regulated, possibly accounting for the insensitivity to the drugs. In conclusion, glioma TICs are responsive to anti-EGFR drugs, but phosphatase and tensin homolog expression and Akt inhibition seem to be necessary for such effect.


Neurobiology of Disease | 2011

17A, a novel non-coding RNA, regulates GABA B alternative splicing and signaling in response to inflammatory stimuli and in Alzheimer disease

Sara Massone; Irene Vassallo; Gloria Fiorino; Manuele Castelnuovo; Federica Barbieri; Roberta Borghi; Massimo Tabaton; Mauro Robello; Elena Gatta; Claudio Russo; Tullio Florio; Giorgio Dieci; Ranieri Cancedda; Aldo Pagano

Alternative splicing is a central component of human brain complexity; nonetheless, its regulatory mechanisms are still largely unclear. In this work, we describe a novel non-coding (nc) RNA (named 17A) RNA polymerase (pol) III-dependent embedded in the human G-protein-coupled receptor 51 gene (GPR51, GABA B2 receptor). The stable expression of 17A in SHSY5Y neuroblastoma cells induces the synthesis of an alternative splicing isoform that abolish GABA B2 intracellular signaling (i.e., inhibition of cAMP accumulation and activation of K(+) channels). Indeed, 17A is expressed in human brain, and we report that it is upregulated in cerebral tissues derived from Alzheimer disease patients. We demonstrate that 17A expression in neuroblastoma cells enhances the secretion of amyloid β peptide (Aβ) and the Aβ x-42/Αβ x-40 peptide ratio and that its synthesis is induced in response to inflammatory stimuli. These data correlate, for the first time, the activity of a novel pol III-dependent ncRNA to alternative splicing events and, possibly, to neurodegeneration induced by abnormal GABA B function. We anticipate that further analysis of pol III-dependent regulation of alternative splicing will disclose novel regulatory pathways associated to brain physiology and/or pathology.


Cell Cycle | 2013

Metformin selectively affects human glioblastoma tumor-initiating cell viability: A role for metformin-induced inhibition of Akt

Roberto Würth; Alessandra Pattarozzi; Monica Gatti; Adirana Bajetto; Alessandro Corsaro; Alessia Parodi; Rodolfo Sirito; Michela Massollo; Cecilia Marini; Gianluigi Zona; Daniela Fenoglio; Gianmario Sambuceti; Gilberto Filaci; Antonio Daga; Federica Barbieri; Tullio Florio

Cancer stem cell theory postulates that a small population of tumor-initiating cells is responsible for the development, progression and recurrence of several malignancies, including glioblastoma. In this perspective, tumor-initiating cells represent the most relevant target to obtain effective cancer treatment. Metformin, a first-line drug for type II diabetes, was reported to possess anticancer properties affecting the survival of cancer stem cells in breast cancer models. We report that metformin treatment reduced the proliferation rate of tumor-initiating cell-enriched cultures isolated from four human glioblastomas. Metformin also impairs tumor-initiating cell spherogenesis, indicating a direct effect on self-renewal mechanisms. Interestingly, analyzing by FACS the antiproliferative effects of metformin on CD133-expressing subpopulation, a component of glioblastoma cancer stem cells, a higher reduction of proliferation was observed as compared with CD133-negative cells, suggesting a certain degree of cancer stem cell selectivity in its effects. In fact, glioblastoma cell differentiation strongly reduced sensitivity to metformin treatment. Metformin effects in tumor-initiating cell-enriched cultures were associated with a powerful inhibition of Akt-dependent cell survival pathway, while this pathway was not affected in differentiated cells. The specificity of metformin antiproliferative effects toward glioblastoma tumor-initiating cells was confirmed by the lack of significant inhibition of normal human stem cells (umbilical cord-derived mesenchymal stem cells) in vitro proliferation after metformin exposure. Altogether, these data clearly suggest that metformin exerts antiproliferative activity on glioblastoma cells, showing a higher specificity toward tumor-initiating cells, and that the inhibition of Akt pathway may represent a possible intracellular target of this effect.


Glia | 2000

Cultured astrocyte proliferation induced by extracellular guanosine involves endogenous adenosine and is raised by the co‐presence of microglia

Renata Ciccarelli; Patrizia Di Iorio; Iolanda D'Alimonte; Patricia Giuliani; Tullio Florio; Francesco Caciagli; Pamela J. Middlemiss; Michel P. Rathbone

Extracellular adenosine (Ado) and ATP stimulate astrocyte proliferation through activation of P1 and P2 purinoceptors. Extracellular GTP and guanosine (Guo), however, that do not bind strongly to these receptors, are more effective mitogens than ATP and Ado. Exogenous Guo, like GTP and 5′‐guanosine‐βγ‐imidotriphosphate (GMP‐PNP), dose‐dependently stimulated proliferation of rat cultured astrocytes; potency order GMP‐PNP > GTP ≥ Guo. The mitogenic effect of Guo was independent of the extracellular breakdown of GTP to Guo, because GMP‐PNP, a GTP analogue resistant to hydrolysis, was the most mitogenic. In addition to a direct effect on astrocytes, Guo exerts its proliferative activity involving Ado. Exogenous Guo, indeed, enhanced the extracellular levels of endogenous Ado assayed by HPLC in the medium of cultured astrocytes. Culture pretreatment with Ado deaminase (ADA), that converts Ado into inosine, reduced but did not abolish Guo‐induced astrocyte proliferation whereas erythro‐9‐(2‐hydroxy‐3‐nonyl)adenine (EHNA), that inhibits ADA activity, amplified Guo effect. Moreover, the mitogenic activity of Guo was partly inhibited by 8‐cyclopentyl‐1,3‐dipropylxanthine and alloxazine, antagonists of Ado A1 and A2B receptors, respectively. Also microglia seem to be a target for the action of Guo. Indeed, the mitogenic effect of Guo on astrocytes was: i) increased proportionally to the number of microglial cells present in the astrocyte cultures; ii) amplified when purified cultures of astrocytes were supplemented with conditioned medium deriving from Guo‐pretreated microglial cultures. These data indicate that the mitogenic effects exerted by exogenous Guo on rat astrocytes are mediated via complex mechanisms involving extracellular Ado and microglia‐derived soluble factors. GLIA 29:202–211, 2000.


Journal of Biological Chemistry | 2007

Amyloid precursor protein and presenilin1 interact with the adaptor GRB2 and modulate ERK1,2 signaling

Mario Nizzari; Valentina Venezia; Emanuela Repetto; Valentina Caorsi; Raffaella Magrassi; Maria Cristina Gagliani; Pia Carlo; Tullio Florio; Gennaro Schettini; Carlo Tacchetti; Tommaso Russo; Alberto Diaspro; Claudio Russo

The amyloid precursor protein (APP) and the presenilins 1 and 2 are genetically linked to the development of familial Alzheimer disease. APP is a single-pass transmembrane protein and precursor of fibrillar and toxic amyloid-β peptides, which are considered responsible for Alzheimer disease neurodegeneration. Presenilins are multipass membrane proteins, involved in the enzymatic cleavage of APP and other signaling receptors and transducers. The role of APP and presenilins in Alzheimer disease development seems to be related to the formation of amyloid-β peptides; however, their physiological function, reciprocal interaction, and molecular mechanisms leading to neurodegeneration are unclear. APP and presenilins are also involved in multiple interactions with intracellular proteins, the significance of which is under investigation. Among the different APP-interacting proteins, we focused our interest on the GRB2 adaptor protein, which connects cell surface receptors to intracellular signaling pathways. In this study we provide evidence by co-immunoprecipitation experiments, confocal and electron microscopy, and by fluorescence resonance energy transfer experiments that both APP and presenilin1 interact with GRB2 in vesicular structures at the centrosome of the cell. The final target for these interactions is ERK1,2, which is activated in mitotic centrosomes in a PS1- and APP-dependent manner. These data suggest that both APP and presenilin1 can be part of a common signaling pathway that regulates ERK1,2 and the cell cycle.

Collaboration


Dive into the Tullio Florio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge