Tung T. Hoang
University of Calgary
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tung T. Hoang.
Gene | 1995
Herbert P. Schweizer; Tung T. Hoang
A novel pUC19-based gene replacement vector has been developed. This vector incorporates (i) the counterselectable sacB marker, (ii) a lacZ alpha allele for blue-white screening, (iii) an oriT for conjugation-mediated plasmid transfer and (iv) unique cloning sites for SmaI and the rare-cutting meganuclease I-SceI. These rare restriction sites are also present on the helper plasmid pUC19Sce. The replacement vector is engineered to contain few restriction sites to gain greater access to restriction sites within cloned DNA fragments, thus facilitating their genetic manipulation. The usefulness of the system was demonstrated by chromosomal integration of a newly constructed xylE::GmR fusion cassette into the glpD gene of Pseudomonas aeruginosa.
Antimicrobial Agents and Chemotherapy | 2001
Rungtip Chuanchuen; Kerry Beinlich; Tung T. Hoang; Anna Becher; RoxAnn R. Karkhoff-Schweizer; Herbert P. Schweizer
ABSTRACT Triclosan is an antiseptic frequently added to items as diverse as soaps, lotions, toothpaste, and many commonly used household fabrics and plastics. Although wild-type Pseudomonas aeruginosaexpresses the triclosan target enoyl-acyl carrier protein reductase, it is triclosan resistant due to expression of the MexAB-OprM efflux system. Exposure of a susceptible Δ(mexAB-oprM) strain to triclosan selected multidrug-resistant bacteria at high frequencies. These bacteria hyperexpressed the MexCD-OprJ efflux system due to mutations in its regulatory gene, nfxB. The MICs of several drugs for these mutants were increased up to 500-fold, including the MIC of ciprofloxacin, which was increased 94-fold. Whereas the MexEF-OprN efflux system also participated in triclosan efflux, this antimicrobial was not a substrate for MexXY-OprM.
Microbiology | 1997
Tung T. Hoang; Scott Williams; Herbert P. Schweizer; Joseph S. Lam
asd mutants of Gram-negative and some Gram-positive bacteria have an obligate requirement for diaminopimelic acid (DAP), an essential constituent of the cell wall of these organisms. In environments deprived of DAP, for example mammalian tissues, they will undergo lysis. This was previously exploited to develop vaccine strains of Salmonella typhimurium and cloning vectors containing asd as an in vivo selectable marker. As a first step for development of such systems for Pseudomonas aeruginosa, the asd gene from wild-type strain PAO1 was cloned by a combined approach of PCR amplification from chromosomal DNA, construction of mini-libraries and by complementation of an Escherichia coli δasd mutant. The nucleotide sequence of a 2433 bp Smal-Nsil fragment was determined. This fragment contained the C-terminal 47 nucleotides of leuB, encoding 3-isopropylmalate dehydrogenase; asd, encoding aspartate-β-semialdehyde dehydrogenase (Asd); and orfA, whose product showed similarity to the Asd proteins from Vibrio spp. By subcloning, asd was localized to a 1.24 kb DNA fragment which in an E. coli T7 expression system strongly expressed a 40000 Da protein. The amino acid sequence was deduced from the DNA sequence. A comparison of the Asd proteins from P. aeruginosa, E. coli and Haemophilus influenzae revealed greater than 63% identity, demonstrating the conserved nature of Asd in Gram-negative bacteria, and defined the active-site-containing consensus sequence GGNCTVXMLMXXXLGLF as a possible signature motif. Chromosomal δasd mutants were isolated. They were auxotrophic for DAP, lysine, methionine and threonine, and lysed in the absence of DAP. Genetic analyses indicated that orfA probably is naturally frame-shifted and does not contribute to the Asd phenotype. By PFGE, the asd gene was mapped to between coordinates 1.89 and 2.15 Mbp, or 37-40 min, on the 5.9 Mbp P. aeruginosa chromosome.
Journal of Bacteriology | 2000
Nazir A. Barekzi; Kerry Beinlich; Tung T. Hoang; Xuan-Quynh T. Pham; RoxAnn R. Karkhoff-Schweizer; Herbert P. Schweizer
The genomes of the two clonally derived Pseudomonas aeruginosa prototypic strains PAO1 and DSM-1707 differ by the presence of a 2. 19-Mb inversion including oriC. Integration of two Flp recombinase target sites near the rrn operons containing the inversion endpoints in PAO1 led to Flp-catalyzed inversion of the intervening 1.59-Mb fragment, including oriC, at high frequencies (83%), favoring the chromosome configuration found in DSM-1707. The results indicate that the oriC-containing region of the P. aeruginosa chromosome can readily undergo and tolerate large inversions.
Molecular Microbiology | 2017
Yun Heacock-Kang; Zhenxin Sun; Jan Zarzycki-Siek; Ian A. McMillan; Michael H. Norris; Andrew P. Bluhm; Darlene Cabanas; Dawson Fogen; Hung Vo; Stuart P. Donachie; Bradley R. Borlee; Christopher D. Sibley; Shawn Lewenza; Michael J. Schurr; Herbert P. Schweizer; Tung T. Hoang
Bacterial cooperative associations and dynamics in biofilm microenvironments are of special interest in recent years. Knowledge of localized gene‐expression and corresponding bacterial behaviors within the biofilm architecture at a global scale has been limited, due to a lack of robust technology to study limited number of cells in stratified layers of biofilms. With our recent pioneering developments in single bacterial cell transcriptomic analysis technology, we generated herein an unprecedented spatial transcriptome map of the mature in vitro Pseudomonas aeruginosa biofilm model, revealing contemporaneous yet altered bacterial behaviors at different layers within the biofilm architecture (i.e., surface, middle and interior of the biofilm). Many genes encoding unknown functions were highly expressed at the biofilm‐solid interphase, exposing a critical gap in the knowledge of their activities that may be unique to this interior niche. Several genes of unknown functions are critical for biofilm formation. The in vivo importance of these unknown proteins was validated in invertebrate (fruit fly) and vertebrate (mouse) models. We envisage the future value of this report to the community, in aiding the further pathophysiological understanding of P. aeruginosa biofilms. Our approach will open doors to the study of bacterial functional genomics of different species in numerous settings.
PLOS ONE | 2017
Michael H. Norris; Yun Heacock-Kang; Jan Zarzycki-Siek; Andrew P. Bluhm; Ian A. McMillan; Herbert P. Schweizer; Tung T. Hoang
Burkholderia spp. are genetically and physiologically diverse. Some strains are naturally transformable and capable of DNA catabolism. Burkholderia pseudomallei (Bp) strains 1026b and K96243 and B. thailandensis strain E264 are able to utilize DNA as a sole carbon source for growth, while only strains 1026b and E264 are naturally transformable. In this study, we constructed low-copy broad-host-range fosmid library, containing Bp strain 1026b chromosomal DNA fragments, and employed a novel positive selection approach to identify genes responsible for DNA uptake and DNA catabolism. The library was transferred to non-competent Bp K96243 and B. cenocepacia (Bc) K56-2, harboring chromosomally-inserted FRT-flanked sacB and pheS counter-selection markers. The library was incubated with DNA encoding Flp recombinase, followed by counter-selection on sucrose and chlorinated phenylalanine, to select for clones that took up flp-DNA, transiently expressed Flp, and excised the sacB-pheS cassette. Putative clones that survived the counter-selection were subsequently incubated with gfp-DNA and bacteria were visualized via fluorescent microscopy to confirm natural competency. Fosmid sequencing identified several 1026b genes implicated in DNA uptake, which were validated using chromosomal mutants. One of the naturally competent clones selected in Bc K56-2 enabled Bc, Bp and B. mallei to utilize DNA as a sole carbon source, and all fosmids were used to successfully create mutations in non-naturally-competent B. mallei and Bp strains.
Scientific Reports | 2018
Yun Heacock-Kang; Ian A. McMillan; Jan Zarzycki-Siek; Zhenxin Sun; Andrew P. Bluhm; Darlene Cabanas; Tung T. Hoang
Natural competency requires uptake of exogenous DNA from the environment and the integration of that DNA into recipient bacteria can be used for DNA-repair or genetic diversification. The Burkholderia genus is unique in that only some of the species and strains are naturally competent. We identified and characterized two genes, comE and crp, from naturally competent B. pseudomallei 1026b that play a role in DNA uptake and catabolism. Single-copies of rhamnose-inducible comE and crp genes were integrated into a Tn7 attachment-site in non-naturally competent Burkholderia including pathogens B. pseudomallei K96243, B. cenocepacia K56-2, and B. mallei ATCC23344. Strains expressing comE or crp were assayed for their ability to uptake and catabolize DNA. ComE and Crp allowed non-naturally competent Burkholderia species to catabolize DNA, uptake exogenous gfp DNA and express GFP. Furthermore, we used synthetic comE and crp to expand the utility of the λ-red recombineering system for genetic manipulation of non-competent Burkholderia species. A newly constructed vector, pKaKa4, was used to mutate the aspartate semialdehyde dehydrogenase (asd) gene in four B. mallei strains, leading to the complete attenuation of these tier-1 select-agents. These strains have been excluded from select-agent regulations and will be of great interest to the field.
Journal of Bacteriology | 1999
Tung T. Hoang; Herbert P. Schweizer
Archive | 1996
Herbert P. Schweizer; Thomas R. Klassen; Tung T. Hoang
Journal of Bacteriology | 1999
Alecksandr J. Kutchma; Tung T. Hoang; Herbert P. Schweizer