Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tuomo Glumoff is active.

Publication


Featured researches published by Tuomo Glumoff.


Microbial Cell Factories | 2010

A novel fed-batch based cultivation method provides high cell-density and improves yield of soluble recombinant proteins in shaken cultures

Mirja Krause; Kaisa Ukkonen; Tatu J.K. Haataja; Maria Ruottinen; Tuomo Glumoff; Antje Neubauer; Peter Neubauer; Antti Vasala

BackgroundCultivations for recombinant protein production in shake flasks should provide high cell densities, high protein productivity per cell and good protein quality. The methods described in laboratory handbooks often fail to reach these goals due to oxygen depletion, lack of pH control and the necessity to use low induction cell densities. In this article we describe the impact of a novel enzymatically controlled fed-batch cultivation technology on recombinant protein production in Escherichia coli in simple shaken cultures.ResultsThe enzymatic glucose release system together with a well-balanced combination of mineral salts and complex medium additives provided high cell densities, high protein yields and a considerably improved proportion of soluble proteins in harvested cells. The cultivation method consists of three steps: 1) controlled growth by glucose-limited fed-batch to OD600 ~10, 2) addition of growth boosters together with an inducer providing efficient protein synthesis within a 3 to 6 hours period, and 3) a slow growth period (16 to 21 hours) during which the recombinant protein is slowly synthesized and folded. Cell densities corresponding to 10 to 15 g l-1 cell dry weight could be achieved with the developed technique. In comparison to standard cultures in LB, Terrific Broth and mineral salt medium, we typically achieved over 10-fold higher volumetric yields of soluble recombinant proteins.ConclusionsWe have demonstrated that by applying the novel EnBase® Flo cultivation system in shaken cultures high cell densities can be obtained without impairing the productivity per cell. Especially the yield of soluble (correctly folded) proteins was significantly improved in comparison to commonly used LB, Terrific Broth or mineral salt media. This improvement is thought to result from a well controlled physiological state during the whole process. The higher volumetric yields enable the use of lower culture volumes and can thus significantly reduce the amount of time and effort needed for downstream processing or process optimization. We claim that the new cultivation system is widely applicable and, as it is very simple to apply, could widely replace standard shake flask approaches.


American Journal of Human Genetics | 2006

Mutational spectrum of D-bifunctional protein deficiency and structure- based genotype-phenotype analysis

Sacha Ferdinandusse; Mari S. Ylianttila; Jolein Gloerich; M. Kristian Koski; Wendy Oostheim; Hans R. Waterham; J. Kalervo Hiltunen; Tuomo Glumoff

D-bifunctional protein (DBP) deficiency is an autosomal recessive inborn error of peroxisomal fatty acid oxidation. The clinical presentation of DBP deficiency is usually very severe, but a few patients with a relatively mild presentation have been identified. In this article, we report the mutational spectrum of DBP deficiency on the basis of molecular analysis in 110 patients. We identified 61 different mutations by DBP cDNA analysis, 48 of which have not been reported previously. The predicted effects of the different disease-causing amino acid changes on protein structure were determined using the crystal structures of the (3R)-hydroxyacyl-coenzyme A (CoA) dehydrogenase unit of rat DBP and the 2-enoyl-CoA hydratase 2 unit and liganded sterol carrier protein 2-like unit of human DBP. The effects ranged from the replacement of catalytic amino acid residues or residues in direct contact with the substrate or cofactor to disturbances of protein folding or dimerization of the subunits. To study whether there is a genotype-phenotype correlation for DBP deficiency, these structure-based analyses were combined with extensive biochemical analyses of patient material (cultured skin fibroblasts and plasma) and available clinical information on the patients. We found that the effect of the mutations identified in patients with a relatively mild clinical and biochemical presentation was less detrimental to the protein structure than the effect of mutations identified in those with a very severe presentation. These results suggest that the amount of residual DBP activity correlates with the severity of the phenotype. From our data, we conclude that, on the basis of the predicted effect of the mutations on protein structure, a genotype-phenotype correlation exists for DBP deficiency.


Journal of Biological Chemistry | 1999

Yeast Peroxisomal Multifunctional Enzyme: (3R)-Hydroxyacyl-CoA Dehydrogenase Domains A and B Are Required for Optimal Growth on Oleic Acid

Yong-Mei Qin; Marttila Ms; Antti M. Haapalainen; Siivari Km; Tuomo Glumoff; J K Hiltunen

The yeast peroxisomal (3R)-hydroxyacyl-CoA dehydrogenase/2-enoyl-CoA hydratase 2 (multifunctional enzyme type 2; MFE-2) has two N-terminal domains belonging to the short chain alcohol dehydrogenase/reductase superfamily. To investigate the physiological roles of these domains, here called A and B, Saccharomyces cerevisiae fox-2 cells (devoid of Sc MFE-2) were taken as a model system. Gly16 and Gly329 of the S. cerevisiae A and B domains, corresponding to Gly16, which is mutated in the human MFE-2 deficiency, were mutated to serine and cloned into the yeast expression plasmid pYE352. In oleic acid medium, fox-2 cells transformed with pYE352:: ScMFE-2(aΔ) and pYE352::ScMFE-2(bΔ) grew slower than cells transformed with pYE352::ScMFE-2, whereas cells transformed with pYE352::ScMFE-2(aΔbΔ) failed to grow. Candida tropicalis MFE-2 with a deleted hydratase 2 domain (Ct MFE- 2(h2Δ)) and mutational variants of the A and B domains (Ct MFE-2(h2ΔaΔ), Ct MFE- 2(h2ΔbΔ), andCt MFE- 2(h2ΔaΔbΔ)) were overexpressed and characterized. All proteins were dimers with similar secondary structure elements. Both wild type domains were enzymatically active, with the B domain showing the highest activity with short chain and the A domain with medium and long chain (3R)-hydroxyacyl-CoA substrates. The data show that the dehydrogenase domains of yeast MFE-2 have different substrate specificities required to allow the yeast to propagate optimally on fatty acids as the carbon source.


Protein Engineering | 1994

The structure of E.coli soluble inorganic pyrophosphatase at 2.7 Å resolution

Jussi Kankare; Genevieve S. Neal; Tiina A. Salminen; Tuomo Glumoff; Barry S. Cooperman; Reijo Lahti; Adrian Goldman

The structure of E.coli soluble inorganic pyrophosphatase has been refined at 2.7 A resolution to an R-factor of 20.9%. The overall fold of the molecule is essentially the same as yeast pyrophosphatase, except that yeast pyrophosphatase is longer at both the N- and C-termini. Escherichia coli pyrophosphatase is a mixed alpha + beta protein with a complicated topology. The active site cavity, which is also very similar to the yeast enzyme, is formed by seven beta-strands and an alpha-helix and has a rather asymmetric distribution of charged residues. Our structure-based alignment extends and improves upon earlier sequence alignment studies; it shows that probably no more than 14, not 15-17 charged and polar residues are part of the conserved enzyme mechanism of pyrophosphatases. Six of these conserved residues, at the bottom of the active site cavity, form a tight group centred on Asp70 and probably bind the two essential Mg2+ ions. The others, more spreadout and more positively charged, presumably bind substrate. Escherichia coli pyrophosphatase has an extra aspartate residue in the active site cavity, which may explain why the two enzymes bind divalent cation differently. Based on the structure, we have identified a sequence motif that seems to occur only in soluble inorganic pyrophosphatases.


Journal of Biological Chemistry | 2003

Candida tropicalis Expresses Two Mitochondrial 2-Enoyl Thioester Reductases That Are Able to Form Both Homodimers and Heterodimers

Juha M. Torkko; Kari Koivuranta; Alexander J. Kastaniotis; Tomi T. Airenne; Tuomo Glumoff; Mika Ilves; Andreas Hartig; Aner Gurvitz; J. Kalervo Hiltunen

Here we report on the cloning of a Candida tropicalis gene, ETR2, that is closely related to ETR1. Both genes encode enzymatically active 2-enoyl thioester reductases involved in mitochondrial synthesis of fatty acids (fatty acid synthesis type II) and respiratory competence. The 5′- and 3′-flanking (coding) regions of ETR2 and ETR1 are about 90% (97%) identical, indicating that the genes have evolved via gene duplication. The gene products differ in three amino acid residues: Ile67 (Val), Ala92 (Thr), and Lys251 (Arg) in Etr2p (Etr1p). Quantitative PCR analysis and reverse transcriptase-PCR indicated that both genes were expressed about equally in fermenting and ETR1 predominantly respiring yeast cells. Like the situation with ETR1, expression of ETR2 in respiration-deficient Saccharomyces cerevisiae mutant cells devoid of Ybr026p/Etr1p was able to restore growth on glycerol. Triclosan that is used as an antibacterial agent against fatty acid synthesis type II 2-enoyl thioester reductases inhibited growth of FabI overexpressing mutant yeast cells but was not able to inhibit respiratory growth of the ETR2- or ETR1-complemented mutant yeast cells. Resolving of crystal structures obtained via Etr2p and Etr1p co-crystallization indicated that all possible dimer variants occur in the same asymmetric unit, suggesting that similar dimer formation also takes place in vivo.


Structure | 2003

Binary Structure of the Two-Domain (3R)-Hydroxyacyl-CoA Dehydrogenase from Rat Peroxisomal Multifunctional Enzyme Type 2 at 2.38 Å Resolution

Antti M. Haapalainen; M. Kristian Koski; Yong-Mei Qin; J. Kalervo Hiltunen; Tuomo Glumoff

The crystal structure of (3R)-hydroxyacyl-CoA dehydrogenase of rat peroxisomal multifunctional enzyme type 2 (MFE-2) was solved at 2.38 A resolution. The catalytic entity reveals an alpha/beta short chain alcohol dehydrogenase/reductase (SDR) fold and the conformation of the bound nicotinamide adenine dinucleotide (NAD(+)) found in other SDR enzymes. Of great interest is the separate COOH-terminal domain, which is not seen in other SDR structures. This domain completes the active site cavity of the neighboring monomer and extends dimeric interactions. Peroxisomal diseases that arise because of point mutations in the dehydrogenase-coding region of the MFE-2 gene can be mapped to changes in amino acids involved in NAD(+) binding and protein dimerization.


Cellular and Molecular Life Sciences | 2016

Glycosyltransferase complexes in eukaryotes: long-known, prevalent but still unrecognized

Sakari Kellokumpu; Antti Hassinen; Tuomo Glumoff

Glycosylation is the most common and complex cellular modification of proteins and lipids. It is critical for multicellular life and its abrogation often leads to a devastating disease. Yet, the underlying mechanistic details of glycosylation in both health and disease remain unclear. Partly, this is due to the complexity and dynamicity of glycan modifications, and the fact that not all the players are taken into account. Since late 1960s, a vast number of studies have demonstrated that glycosyltransferases typically form homomeric and heteromeric complexes with each other in yeast, plant and animal cells. To propagate their acceptance, we will summarize here accumulated data for their prevalence and potential functional importance for glycosylation focusing mainly on their mutual interactions, the protein domains mediating these interactions, and enzymatic activity changes that occur upon complex formation. Finally, we will highlight the few existing 3D structures of these enzyme complexes to pinpoint their individual nature and to emphasize that their lack is the main obstacle for more detailed understanding of how these enzyme complexes interact and function in a eukaryotic cell.


Journal of Molecular Biology | 2002

Response of SCP-2L Domain of Human MFE-2 to Ligand Removal: Binding Site Closure and Burial of Peroxisomal Targeting Signal

Marc F. Lensink; Antti M. Haapalainen; J.K. Hiltunen; Tuomo Glumoff; André H. Juffer

In the study of the structure and function relationship of human MFE-2, we have investigated the dynamics of human MFE-2SCP-2L (hSCP-2L) and its response to ligand removal. A comparison was made with homologous rabbit SCP-2. Breathing and a closing motion are found, identifiable with an adjustment in size and a closing off of the binding pocket. Crucial residues for structural integrity have been identified. Particularly mobile areas of the protein are loop 1 that is connecting helices A and C in space, and helix D, next to the entrance of the pocket. In hSCP-2L, the binding pocket gets occupied by Phe93, which is making a tight hydrophobic contact with Trp36. In addition, it is found that the C-terminal peroxisomal targeting signal (PTS1) that is solvent exposed in the complexed structure becomes buried when no ligand is present. Moreover, an anti-correlation exists between burial of PTS1 and the size of the binding pocket. The results are in accordance with plant nsLTPs, where a similar accommodation of binding pocket size was found after ligand binding/removal. Furthermore, the calculations support the suggestion of a ligand-assisted targeting mechanism.


Bioseparation | 2000

Production and purification of recombinant human α2C2 adrenergic receptor using Saccharomyces cerevisiae

Arnab Kapat; Veli-Pekka Jaakola; Heikki Heimo; Sari Liitti; Pirkko Heikinheimo; Tuomo Glumoff; Adrian Goldman

The objective is to generate milligram quantities of recombinant human α2C2 adrenergic receptor for X-ray crystallographic studies. It has been cloned in Saccharomyces cerevisiae, and the production level is at best about 13 pmol/mg of membrane protein, as estimated by radio-ligand binding assay. The receptor is solubilized with sucrose monolaurate followed by immunoaffinity purification and reconstitution into phospholipid vesicles. The efficiency of solubilization and immuno-purification are 60% and 91%, respectively.


Journal of Biological Chemistry | 2010

Identification of a Substrate-binding Site in a Peroxisomal β-Oxidation Enzyme by Photoaffinity Labeling with a Novel Palmitoyl Derivative

Yoshinori Kashiwayama; Takenori Tomohiro; Kotomi Narita; Miyuki Suzumura; Tuomo Glumoff; J. Kalervo Hiltunen; Paul P. Van Veldhoven; Yasumaru Hatanaka; Tsuneo Imanaka

Peroxisomes play an essential role in a number of important metabolic pathways including β-oxidation of fatty acids and their derivatives. Therefore, peroxisomes possess various β-oxidation enzymes and specialized fatty acid transport systems. However, the molecular mechanisms of these proteins, especially in terms of substrate binding, are still unknown. In this study, to identify the substrate-binding sites of these proteins, we synthesized a photoreactive palmitic acid analogue bearing a diazirine moiety as a photophore, and performed photoaffinity labeling of purified rat liver peroxisomes. As a result, an 80-kDa peroxisomal protein was specifically labeled by the photoaffinity ligand, and the labeling efficiency competitively decreased in the presence of palmitoyl-CoA. Mass spectrometric analysis identified the 80-kDa protein as peroxisomal multifunctional enzyme type 2 (MFE2), one of the peroxisomal β-oxidation enzymes. Recombinant rat MFE2 was also labeled by the photoaffinity ligand, and mass spectrometric analysis revealed that a fragment of rat MFE2 (residues Trp249 to Arg251) was labeled by the ligand. MFE2 mutants bearing these residues, MFE2(W249A) and MFE2(R251A), exhibited decreased labeling efficiency. Furthermore, MFE2(W249G), which corresponds to one of the disease-causing mutations in human MFE2, also exhibited a decreased efficiency. Based on the crystal structure of rat MFE2, these residues are located on the top of a hydrophobic cavity leading to an active site of MFE2. These data suggest that MFE2 anchors its substrate around the region from Trp249 to Arg251 and positions the substrate along the hydrophobic cavity in the proper direction toward the catalytic center.

Collaboration


Dive into the Tuomo Glumoff's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge