Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Türkan Sakinc is active.

Publication


Featured researches published by Türkan Sakinc.


Infection and Immunity | 2006

SdrI, a Serine-Aspartate Repeat Protein Identified in Staphylococcus saprophyticus Strain 7108, Is a Collagen-Binding Protein

Türkan Sakinc; Britta Kleine; Sören Gatermann

ABSTRACT A gene encoding a serine-aspartate repeat protein of Staphylococcus saprophyticus, an important cause of urinary tract infections in young women, has been cloned and sequenced. In contrast to other SD repeat proteins, SdrI carries 21 additional N-terminal repeats with a consensus sequence of (P/A)ATKE(K/E)A(A/V)(T/I)(A/T/S)EE and has the longest SD(AD)(1-5) repetitive region (854 amino acids) described so far. This highly repetitive sequence contains only the amino acids serine, asparagine, and a distinctly greater amount of alanine (37%) than all other known SD repeat proteins (2.3 to 4.4%). In addition, it is a collagen-binding protein of S. saprophyticus and the second example in this organism of a surface protein carrying the LPXTG motif. We constructed an isogenic sdrI knockout mutant that showed decreased binding to immobilized collagen compared with wild-type S. saprophyticus strain 7108. Binding could be reconstituted by complementation. Collagen binding is specifically caused by SdrI, and the recently described UafA protein, the only LPXTG-containing protein in the genome sequence of the type strain, is not involved in this trait. Our experiments suggest that, as in other staphylococci, the presence of different LPXTG-anchored cell wall proteins is common in S. saprophyticus and support the notion that the presence of matrix-binding surface proteins is common in staphylococci.


Infection and Immunity | 2005

The Surface-Associated Protein of Staphylococcus saprophyticus Is a Lipase

Türkan Sakinc; Magdalena Woznowski; Michael Ebsen; Sören Gatermann

ABSTRACT Staphylococcus saprophyticus surface-associated protein (Ssp) was the first surface protein described for this organism. Ssp-positive strains display a fuzzy layer of surface-associated material in electron micrographs, whereas Ssp-negative strains appear to be smooth. The physiologic function of Ssp, however, has remained elusive. To clone the associated gene, we determined the N-terminal sequence, as well as an internal amino acid sequence, of the purified protein. We derived two degenerate primers from these peptide sequences, which we used to identify the ssp gene from genomic DNA of S. saprophyticus 7108. The gene was cloned by PCR techniques and was found to be homologous to genes encoding staphylococcal lipases. In keeping with this finding, strains 7108 and 9325, which are Ssp positive, showed lipase activity on tributyrylglycerol agar plates, whereas the Ssp-negative strain CCM883 did not. Association of enzyme activity with the cloned DNA was proven by introducing the gene into Staphylococcus carnosus TM300. When wild-type strain 7108 and an isogenic mutant were analyzed by transmission electron microscopy, strain 7108 exhibited the fuzzy surface layer, whereas the mutant appeared to be smooth. Lipase activity and the surface appendages could be restored by reintroduction of the cloned gene into the mutant. Experiments using immobilized collagen type I did not provide evidence for the involvement of Ssp in adherence to this matrix protein. Our experiments thus provided evidence that Ssp is a surface-associated lipase of S. saprophyticus.


Infection and Immunity | 2010

Characterization of a Novel Murine Model of Staphylococcus saprophyticus Urinary Tract Infection Reveals Roles for Ssp and SdrI in Virulence

Kimberly A. Kline; Molly A. Ingersoll; Hailyn V. Nielsen; Türkan Sakinc; Birgitta Henriques-Normark; Sören Gatermann; Michael G. Caparon; Scott J. Hultgren

ABSTRACT Staphylococcus saprophyticus, an obligate human pathogen, is the most common Gram-positive causative agent of urinary tract infection (UTI) in young, healthy women. Despite the clinical importance of S. saprophyticus, little is known about how it causes disease in the urinary tract or how the host responds to the infection. Here we established an in vivo model to study both host and bacterial factors contributing to S. saprophyticus UTI. Using this model, we show that S. saprophyticus preferentially infects C3H/HeN murine kidneys instead of the bladder, a trait observed for multiple clinical isolates. Bacterial persistence in the kidneys was observed in C3H/HeN mice but not in C57BL/6 mice, indicating that host factors strongly contribute to the ability of S. saprophyticus to cause UTI. Using C3H/HeN mice as a model, histologic and immunofluorescence analyses of infected tissues revealed that S. saprophyticus induced epithelial cell shedding in the bladder and an inflammatory response characterized by macrophage and neutrophil infiltration in the bladder and kidneys. The inflammatory response correlated with increased production of proinflammatory cytokines and chemokines in both the bladder and the kidneys. Finally, we observed that the putative S. saprophyticus virulence factors Ssp and SdrI were important for persistence, but not for initial colonization, in the murine urinary tract. Thus, we characterized both host and bacterial factors involved in progression of S. saprophyticus UTI, and we describe a useful model system for studying factors involved in the pathogenesis of this Gram-positive uropathogen.


Infection and Immunity | 2013

Significance of the d-Serine-Deaminase and d-Serine Metabolism of Staphylococcus saprophyticus for Virulence

Miriam Korte-Berwanger; Türkan Sakinc; Kimberly A. Kline; Hailyn V. Nielsen; Scott J. Hultgren; Sören Gatermann

ABSTRACT Staphylococcus saprophyticus is the only species of Staphylococcus that is typically uropathogenic and possesses a gene coding for a d-serine-deaminase (DsdA). As d-serine is prevalent in urine and toxic or bacteriostatic to many bacteria, it is not surprising that the d-serine-deaminase gene is found in the genome of uropathogens. It has been suggested that d-serine-deaminase or the ability to respond to or to metabolize d-serine is important for virulence. For uropathogenic Escherichia coli (UPEC), a high intracellular d-serine concentration affects expression of virulence factors. S. saprophyticus is able to grow in the presence of high d-serine concentrations; however, its d-serine metabolism has not been described. The activity of the d-serine-deaminase was verified by analyzing the formation of pyruvate from d-serine in different strains with and without d-serine-deaminase. Cocultivation experiments were performed to show that d-serine-deaminase confers a growth advantage to S. saprophyticus in the presence of d-serine. Furthermore, in vivo coinfection experiments showed a disadvantage for the ΔdsdA mutant during urinary tract infection. Expression analysis of known virulence factors by reverse transcription-quantitative PCR (RT-qPCR) showed that the surface-associated lipase Ssp is upregulated in the presence of d-serine. In addition, we show that S. saprophyticus is able to use d-serine as the sole carbon source, but interestingly, d-serine had a negative effect on growth when glucose was also present. Taken together, d-serine metabolism is associated with virulence in S. saprophyticus, as at least one known virulence factor is upregulated in the presence of d-serine and a ΔdsdA mutant was attenuated in virulence murine model of urinary tract infection.


BMC Research Notes | 2010

Genotypic and phenotypic variation among Staphylococcus saprophyticus from human and animal isolates

Britta Kleine; Sören Gatermann; Türkan Sakinc

BackgroundThe main aim of this study was to examine the genotypic and phenotypic diversity of Staphylococcus saprophyticus isolates from human and animal origin.FindingsIn total, 236 clinical isolates and 15 animal isolates of S. saprophyticus were characterized in respect of the occurrence of 9 potential virulence genes and four surface properties. All strains were PCR positive for the regulatory genes agr, sar>it>A and rot as well as for the surface proteins UafA and Aas. Nearly 90% of the clinical isolates were found to possess the gene for the surface-associated lipase Ssp and 10% for the collagen binding MSCRAMM SdrI. All animal isolates were negative forsdrI. Lipolytic activity could be detected in 66% of the clinical and 46% of the animal isolates. Adherence to collagen type I was shown of 20% of the clinical strains and 6% of the strains of animal origin. Most S. saprophyticus strains showed hydrophobic properties and only few could agglutinate sheep erythrocytes.ConclusionsWe described a broad analysis of animal and human S. saprophyticus isolates regarding virulence genes and phenotypic properties such as lipase activity, hydrophobicity, and adherence. While S. saprophyticus strains from animal sources have prerequisites for colonization of the urinary tract like the D-serine-deaminase, out findings suggested that they need to acquire new genes e.g. MSCRAMMS for adherence like sdrI and to modulate their existing properties e.g. increasing the lipase activity or reducing hydrophobicity. These apparently important new genes or properties for virulence have to be further analyzed.


BMC Research Notes | 2012

Influence of a 23S ribosomal RNA mutation in Helicobacter pylori strains on the in vitro synergistic effect of clarithromycin and amoxicillin

Türkan Sakinc; Barbara Baars; Nicole Wüppenhorst; Manfred Kist; Johannes Huebner; Wolfgang Opferkuch

BackgroundClarithromycin (CLR) is the most commonly recommended antibiotic in Helicobacter pylori eradication regimens, but the prevalence of CLR-resistant H. pylori is increasing. CLR resistance is associated with mutations in the 23S rRNA gene. However, H. pylori eradication can still be achieved with triple therapy, and an additive effect may occur with multiple antibiotics.MethodsTwenty-six CLR-resistant strains were examined. The MIC of clarithromycin was determined by agar-dilution-testing on Columbia agar, as described elsewhere. The conserved region of the H. pylori 23S rRNA gene between nucleotide positions 1445 and 2846 [GenBank: U27270] was amplified. RFLP and sequence analysis were performed with the 1402-bp PCR product. Synergy between clarithromycin and amoxicillin was assessed using the agar dilution checkerboard technique. To confirm the correlation between mutation and synergistic effect with subinhibitory concentrations of AMX, site-directed mutagenesis was performed in four CLR-susceptible H. pylori isolates.ResultsTwenty-six clarithromycin-resistant strains were examined. The conserved region of the H. pylori 23S rRNA gene was amplified, and the purified PCR product was checked for mutations by restriction fragment length polymorphism (RFLP) analysis and sequencing. A synergistic effect was found in only three of the 12 H. pylori strains (25%) with the A2142G mutation and five of the 10 H. pylori strains (50%) with the A2143G mutation (fractional inhibitory concentration: FIC < 0.5, minimal inhibitory concentration: MIC<2 mg/L) was found. Site-directed mutagenesis was performed in four CLR-susceptible H. pylori isolates.Three of these isolates harboring a mutation in position A2143G grew under selection with CLR (MIC >16 mg/L), and all three strains showed the synergistic effect (FIC<0.5). In contrast, three of the same four strains transformed with DNA fragments with a mutation in position A2142G were resistant to CLR (MIC>16 mg/L) and showed no synergism with amoxicillin (FIC>2).ConclusionsHere we demonstrate that in 100% of the in vitro transformed strains, a mutation at position A2143G leads to a synergistic effect between clarithromycin and amoxicillin, whereas a mutation at position at A2142G had no discernible effect.


BMC Microbiology | 2012

Characterisation of a cell wall-anchored protein of Staphylococcus saprophyticus associated with linoleic acid resistance

Nathan P. King; Türkan Sakinc; Nouri L. Ben Zakour; Makrina Totsika; Begoña Heras; Pavla Simerska; Mark Shepherd; Sören Gatermann; Scott A. Beatson; Mark A. Schembri

BackgroundThe Gram-positive bacterium Staphylococcus saprophyticus is the second most frequent causative agent of community-acquired urinary tract infections (UTI), accounting for up to 20% of cases. A common feature of staphylococci is colonisation of the human skin. This involves survival against innate immune defenses including antibacterial unsaturated free fatty acids such as linoleic acid which act by disrupting bacterial cell membranes. Indeed, S. saprophyticus UTI is usually preceded by perineal skin colonisation.ResultsIn this study we identified a previously undescribed 73.5 kDa cell wall-anchored protein of S. saprophyticus, encoded on plasmid pSSAP2 of strain MS1146, which we termed S.saprophyticussurface protein F (SssF). The sssF gene is highly prevalent in S. saprophyticus clinical isolates and we demonstrate that the SssF protein is expressed at the cell surface. However, unlike all other characterised cell wall-anchored proteins of S. saprophyticus, we were unable to demonstrate a role for SssF in adhesion. SssF shares moderate sequence identity to a surface protein of Staphylococcus aureus (SasF) recently shown to be an important mediator of linoleic acid resistance. Using a heterologous complementation approach in a S. aureus sasF null genetic background, we demonstrate that SssF is associated with resistance to linoleic acid. We also show that S. saprophyticus strains lacking sssF are more sensitive to linoleic acid than those that possess it. Every staphylococcal genome sequenced to date encodes SssF and SasF homologues. Proteins in this family share similar predicted secondary structures consisting almost exclusively of α-helices in a probable coiled-coil formation.ConclusionsOur data indicate that SssF is a newly described and highly prevalent surface-localised protein of S. saprophyticus that contributes to resistance against the antibacterial effects of linoleic acid. SssF is a member of a protein family widely disseminated throughout the staphylococci.


PLOS ONE | 2014

A Novel Role for D-Alanylation of Lipoteichoic Acid of Enterococcus faecalis in Urinary Tract Infection

Dominique Wobser; Liaqat Ali; Elisabeth Grohmann; Johannes Huebner; Türkan Sakinc

Background Enterococci are the third most common cause of healthcare-associated infections, which include urinary tract infections, bacteremia and endocarditis. Cell-surface structures such as lipoteichoic acid (LTA) have been poorly examined in E. faecalis, especially with respect to urinary tract infections (UTIs). The dlt operon is responsible for the D-alanylation of LTA and includes the gene dltA, which encodes the D-alanyl carrier protein ligase (Dcl). The involvement of LTA in UTI infection by E. faecalis has not been studied so far. Here, we examined the role of teichoic acid alanylation in the adhesion of enterococci to uroepithelial cells. Results In a mouse model of urinary tract infection, we showed that E. faecalis 12030ΔdltA mutant colonizes uroepithelial surfaces more efficiently than wild type bacteria. We also demonstrated that this mutant adhered four fold better to human bladder carcinoma cell line T24 compared to the wild type strain. Bacterial adherence could be significantly inhibited by purified lipoteichoic acid (LTA) and inhibition was specific. Conclusion In contrast to bacteraemia model and adherence to colon surfaces, E. faecalis 12030ΔdltA mutant colonized uroepithelial surfaces more efficiently than wild-type bacteria. In the case of the uroepithelial surface the adherence to specific host cells could be prevented by purified LTA. Our results therefore suggest a novel function of alanylation of LTA in E. faecalis.


Fems Microbiology Letters | 2004

Cloning of an agr homologue of Staphylococcus saprophyticus

Türkan Sakinc; Pawel Kulczak; Karsten Henne; Sören Gatermann


Archive | 2014

SdrI in Virulence Tract Infection Reveals Roles for Ssp and Urinary Staphylococcus saprophyticus Characterization of a Novel Murine Model of

Michael G. Caparon; Scott J. Hultgren; Türkan Sakinc; Birgitta Henriques-Normark; A. Kline; Molly A. Ingersoll; Hailyn V. Nielsen

Collaboration


Dive into the Türkan Sakinc's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hailyn V. Nielsen

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Scott J. Hultgren

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kimberly A. Kline

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Michael G. Caparon

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dominique Wobser

University Medical Center Freiburg

View shared research outputs
Researchain Logo
Decentralizing Knowledge