Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tyler Benson is active.

Publication


Featured researches published by Tyler Benson.


Circulation | 2015

Red Blood Cell Dysfunction Induced by High-Fat Diet: Potential Implications for Obesity-Related Atherosclerosis

Dusten Unruh; Ramprasad Srinivasan; Tyler Benson; Stephen Haigh; Danielle Coyle; Neil Batra; Ryan Keil; Robert Sturm; Victor Blanco; Mary B. Palascak; Robert S. Franco; Wilson Tong; Tapan K. Chatterjee; David Y. Hui; W. Sean Davidson; Bruce J. Aronow; Theodosia A. Kalfa; David Manka; Abigail Peairs; Andra Blomkalns; David Fulton; Julia E. Brittain; Neal L. Weintraub; Vladimir Y. Bogdanov

Background— High-fat diet (HFD) promotes endothelial dysfunction and proinflammatory monocyte activation, which contribute to atherosclerosis in obesity. We investigated whether HFD also induces the dysfunction of red blood cells (RBCs), which serve as a reservoir for chemokines via binding to Duffy antigen receptor for chemokines (DARC). Methods and Results— A 60% HFD for 12 weeks, which produced only minor changes in lipid profile in C57/BL6 mice, markedly augmented the levels of monocyte chemoattractant protein-1 bound to RBCs, which in turn stimulated macrophage migration through an endothelial monolayer. Levels of RBC-bound KC were also increased by HFD. These effects of HFD were abolished in DARC–/– mice. In RBCs from HFD-fed wild-type and DARC–/– mice, levels of membrane cholesterol and phosphatidylserine externalization were increased, fostering RBC-macrophage inflammatory interactions and promoting macrophage phagocytosis in vitro. When labeled ex vivo and injected into wild-type mice, RBCs from HFD-fed mice exhibited ≈3-fold increase in splenic uptake. Finally, RBCs from HFD-fed mice induced increased macrophage adhesion to the endothelium when they were incubated with isolated aortic segments, indicating endothelial activation. Conclusions— RBC dysfunction, analogous to endothelial dysfunction, occurs early during diet-induced obesity and may serve as a mediator of atherosclerosis. These findings may have implications for the pathogenesis of atherosclerosis in obesity, a worldwide epidemic. # CLINICAL PERSPECTIVE {#article-title-42}Background— High-fat diet (HFD) promotes endothelial dysfunction and proinflammatory monocyte activation, which contribute to atherosclerosis in obesity. We investigated whether HFD also induces the dysfunction of red blood cells (RBCs), which serve as a reservoir for chemokines via binding to Duffy antigen receptor for chemokines (DARC). Methods and Results— A 60% HFD for 12 weeks, which produced only minor changes in lipid profile in C57/BL6 mice, markedly augmented the levels of monocyte chemoattractant protein-1 bound to RBCs, which in turn stimulated macrophage migration through an endothelial monolayer. Levels of RBC-bound KC were also increased by HFD. These effects of HFD were abolished in DARC–/– mice. In RBCs from HFD-fed wild-type and DARC–/– mice, levels of membrane cholesterol and phosphatidylserine externalization were increased, fostering RBC-macrophage inflammatory interactions and promoting macrophage phagocytosis in vitro. When labeled ex vivo and injected into wild-type mice, RBCs from HFD-fed mice exhibited ≈3-fold increase in splenic uptake. Finally, RBCs from HFD-fed mice induced increased macrophage adhesion to the endothelium when they were incubated with isolated aortic segments, indicating endothelial activation. Conclusions— RBC dysfunction, analogous to endothelial dysfunction, occurs early during diet-induced obesity and may serve as a mediator of atherosclerosis. These findings may have implications for the pathogenesis of atherosclerosis in obesity, a worldwide epidemic.


Journal of Lipid Research | 2015

Berardinelli-Seip congenital lipodystrophy 2 regulates adipocyte lipolysis, browning, and energy balance in adult animals.

Hongyi Zhou; Xinnuo Lei; Tyler Benson; James D. Mintz; Xiaojing Xu; Ruth B. S. Harris; Neal L. Weintraub; Xiaoling Wang; Weiqin Chen

Mutations in BSCL2/SEIPIN cause Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2), but the mechanisms whereby Bscl2 regulates adipose tissue function are unclear. Here, we generated adipose tissue (mature) Bscl2 knockout (Ad-mKO) mice, in which Bscl2 was specifically ablated in adipocytes of adult animals, to investigate the impact of acquired Bscl2 deletion on adipose tissue function and energy balance. Ad-mKO mice displayed reduced adiposity and were protected against high fat diet-induced obesity, but not insulin resistance or hepatic steatosis. Gene expression profiling and biochemical assays revealed increased lipolysis and fatty acid oxidation in white adipose tissue (WAT) and brown adipose tissue , as well as browning of WAT, owing to induction of cAMP/protein kinase A signaling upon Bscl2 deletion. Interestingly, Bscl2 deletion reduced food intake and downregulated adipose β3-adrenergic receptor (ADRB3) expression. Impaired ADRB3 signaling partially offsets upregulated browning-induced energy expenditure and thermogenesis in Ad-mKO mice housed at ambient temperature. However, this counter-regulatory response was abrogated under thermoneutral conditions, resulting in even greater body mass loss in Ad-mKO mice. These findings suggest that Bscl2 regulates adipocyte lipolysis and β-adrenergic signaling to produce complex effects on adipose tissues and whole-body energy balance.


Free Radical Biology and Medicine | 2015

Nox5 stability and superoxide production is regulated by C-terminal binding of Hsp90 and CO-chaperones.

Feng Chen; Steven Haigh; Yanfang Yu; Tyler Benson; Yusi Wang; Xueyi Li; Huijuan Dou; Zsolt Bagi; Alexander D. Verin; David W. Stepp; Gábor Csányi; Ahmed Chadli; Neal L. Weintraub; Susan M.E. Smith; David Fulton

Heat shock protein 90 (Hsp90) is a molecular chaperone that orchestrates the folding and stability of proteins that regulate cellular signaling, proliferation and inflammation. We have previously shown that Hsp90 controls the production of reactive oxygen species by modulating the activity of Noxes1-3 and 5, but not Nox4. The goal of the current study was to define the regions on Nox5 that bind Hsp90 and determine how Hsp90 regulates enzyme activity. In isolated enzyme activity assays, we found that Hsp90 inhibitors selectively decrease superoxide, but not hydrogen peroxide, production. The addition of Hsp90 alone only modestly increases Nox5 enzyme activity but in combination with the co-chaperones, Hsp70, HOP, Hsp40, and p23 it robustly stimulated superoxide, but not hydrogen peroxide, production. Proximity ligation assays reveal that Nox5 and Hsp90 interact in intact cells. In cell lysates using a co-IP approach, Hsp90 binds to Nox5 but not Nox4, and the degree of binding can be influenced by calcium-dependent stimuli. Inhibition of Hsp90 induced the degradation of full length, catalytically inactive and a C-terminal fragment (aa398-719) of Nox5. In contrast, inhibition of Hsp90 did not affect the expression levels of N-terminal fragments (aa1-550) suggesting that Hsp90 binding maintains the stability of C-terminal regions. In Co-IP assays, Hsp90 was bound only to the C-terminal region of Nox5. Further refinement using deletion analysis revealed that the region between aa490-550 mediates Hsp90 binding. Converse mapping experiments show that the C-terminal region of Nox5 bound to the M domain of Hsp90 (aa310-529). In addition to Hsp90, Nox5 bound other components of the foldosome including co-chaperones Hsp70, HOP, p23 and Hsp40. Silencing of HOP, Hsp40 and p23 reduced Nox5-dependent superoxide. In contrast, increased expression of Hsp70 decreased Nox5 activity whereas a mutant of Hsp70 failed to do so. Inhibition of Hsp90 results in the loss of higher molecular weight complexes of Nox5 and decreased interaction between monomers. Collectively these results show that the C-terminal region of Nox5 binds to the M domain of Hsp90 and that the binding of Hsp90 and select co-chaperones facilitate oligomerization and the efficient production of superoxide.


Molecular and Cellular Biology | 2016

Berardinelli-Seip Congenital Lipodystrophy 2/Seipin Is Not Required for Brown Adipogenesis but Regulates Brown Adipose Tissue Development and Function.

Hongyi Zhou; Stephen M. Black; Tyler Benson; Neal L. Weintraub; Weiqin Chen

ABSTRACT Brown adipose tissue (BAT) plays a unique role in regulating whole-body energy homeostasis by dissipating energy through thermogenic uncoupling. Berardinelli-Seip congenital lipodystrophy (BSCL) type 2 (BSCL2; also known as seipin) is a lipodystrophy-associated endoplasmic reticulum membrane protein essential for white adipocyte differentiation. Whether BSCL2 directly participates in brown adipocyte differentiation, development, and function, however, is unknown. We show that BSCL2 expression is increased during brown adipocyte differentiation. Its deletion does not impair the classic brown adipogenic program but rather induces premature activation of differentiating brown adipocytes through cyclic AMP (cAMP)/protein kinase A (PKA)-mediated lipolysis and fatty acid and glucose oxidation, as well as uncoupling. cAMP/PKA signaling is physiologically activated during neonatal BAT development in wild-type mice and greatly potentiated in mice with genetic deletion of Bscl2 in brown progenitor cells, leading to reduced BAT mass and lipid content during neonatal brown fat formation. However, prolonged overactivation of cAMP/PKA signaling during BAT development ultimately causes apoptosis of brown adipocytes through inflammation, resulting in BAT atrophy and increased overall adiposity in adult mice. These findings reveal a key cell-autonomous role for BSCL2 in controlling BAT mass/activity and provide novel insights into therapeutic strategies targeting cAMP/PKA signaling to regulate brown adipocyte function, viability, and metabolic homeostasis.


Molecular and Cellular Endocrinology | 2018

Deletion of the Duffy antigen receptor for chemokines (DARC) promotes insulin resistance and adipose tissue inflammation during high fat feeding

Tyler Benson; Daniel S. Weintraub; Matthew Crowe; Nicole K.H. Yiew; Orishebawo Popoola; Ajay Pillai; Joel Joseph; Krystal Archer; Charlotte Greenway; Tapan K. Chatterjee; James D. Mintz; David W. Stepp; Brian K. Stansfield; Weiqin Chen; Julia E. Brittain; Vladimir Y. Bogdanov; Yan Gao; James G. Wilson; Yaoliang Tang; Ha Won Kim; Neal L. Weintraub

Objective Inflammation in adipose tissues in obesity promotes insulin resistance and metabolic disease. The Duffy antigen receptor for chemokines (DARC) is a promiscuous non-signaling receptor expressed on erythrocytes and other cell types that modulates tissue inflammation by binding chemokines such as monocyte chemoattractant protein-1 (MCP-1) and by acting as a chemokine reservoir. DARC allelic variants are common in humans, but the role of DARC in modulating obesity-related metabolic disease is unknown. Methods We examined body weight gain, tissue adiposity, metabolic parameters and inflammatory marker expression in wild-type and DARC knockout mice fed a chow diet (CD) and high fat diet (HFD). Results Compared to wild-type mice, HFD-fed DARC knockout mice developed glucose intolerance and insulin resistance independent of increases in body weight or adiposity. Interestingly, insulin sensitivity was also diminished in lean male DARC knockout mice fed a chow diet. Insulin production was not reduced by DARC gene deletion, and plasma leptin levels were similar in HFD fed wild-type and DARC knockout mice. MCP-1 levels in plasma rose significantly in the HFD fed wild-type mice, but not in the DARC knockout mice. Conversely, adipose tissue MCP-1 levels were higher, and more macrophage crown-like structures were detected, in the HFD fed DARC knockout mice as compared with the wild-type mice, consistent with augmented adipose tissue inflammation that is not accurately reflected by plasma levels of DARC-bound MCP-1 in these mice.


Laboratory Investigation | 2018

A single high-fat meal provokes pathological erythrocyte remodeling and increases myeloperoxidase levels: implications for acute coronary syndrome

Tyler Benson; Neal L. Weintraub; Ha Won Kim; Nichole Seigler; Sanjiv Kumar; Jonathan Pye; Tetsuo Horimatsu; Rod Pellenberg; David W. Stepp; Rudolf Lucas; Vladimir Y. Bogdanov; Sheldon E. Litwin; Julia E. Brittain; Ryan A. Harris

High-fat meal (HFM) consumption can produce acute lipemia and trigger myocardial infarction in patients with atherosclerosis, but the mechanisms are poorly understood. Erythrocytes (red blood cells, RBCs) intimately interact with inflammatory cells and blood vessels and play a complex role in regulating vascular function. Chronic high-fat feeding in mice induces pathological RBC remodeling, suggesting a novel link between HFM, RBCs, and vascular dysfunction. However, whether acute HFM can induce RBC remodeling in humans is unknown. Ten healthy individuals were subjected to biochemical testing and assessment of endothelial-dependent flow-mediated dilation (FMD) before and after a single HFM or iso-caloric meal (ICM). Following the HFM, triglyceride, cholesterol, and free fatty acid levels were all significantly increased, in conjunction with impaired post-prandial FMD. Additionally, peripheral blood smears demonstrated microcytes, remodeled RBCs, and fatty monocytes. Increased intracellular ROS and nitration of protein band 3 was detected in RBCs following the HFM. The HFM elevated plasma and RBC-bound myeloperoxidase (MPO), which was associated with impaired FMD and oxidation of HDL. Monocytic cells exposed to lipid in vitro released MPO, while porcine coronary arteries exposed to fatty acids ex vivo took up MPO. We demonstrate in humans that a single HFM induces pathological RBC remodeling and concurrently elevates MPO, which can potentially enter the blood vessel wall to trigger oxidative stress and destabilize vulnerable plaques. These novel findings may have implications for the short-term risk of HFM consumption and alimentary lipemia in patients with atherosclerosis.A single high fat meal can induce pathological red blood cell (RBC) remodeling and oxidative stress, in conjunction with elevations in plasma, RBC-bound myeloperoxidase (MPO) and MPO-mediated high-density lipoprotein oxidation. These findings demonstrate that consumption of heavy meals enriched in fat may promote destabilization of vulnerable plaques leading to acute myocardial infarction.


Circulation | 2015

Red Blood Cell Dysfunction Induced by High-Fat DietCLINICAL PERSPECTIVE: Potential Implications for Obesity-Related Atherosclerosis

Dusten Unruh; Ramprasad Srinivasan; Tyler Benson; Stephen Haigh; Danielle Coyle; Neil Batra; Ryan Keil; Robert Sturm; Victor Blanco; Mary B. Palascak; Robert S. Franco; Wilson Tong; Tapan K. Chatterjee; David Y. Hui; W. Sean Davidson; Bruce J. Aronow; Theodosia A. Kalfa; David Manka; Abigail Peairs; Andra L. Blomkalns; David Fulton; Julia E. Brittain; Neal L. Weintraub; Vladimir Y. Bogdanov

Background— High-fat diet (HFD) promotes endothelial dysfunction and proinflammatory monocyte activation, which contribute to atherosclerosis in obesity. We investigated whether HFD also induces the dysfunction of red blood cells (RBCs), which serve as a reservoir for chemokines via binding to Duffy antigen receptor for chemokines (DARC). Methods and Results— A 60% HFD for 12 weeks, which produced only minor changes in lipid profile in C57/BL6 mice, markedly augmented the levels of monocyte chemoattractant protein-1 bound to RBCs, which in turn stimulated macrophage migration through an endothelial monolayer. Levels of RBC-bound KC were also increased by HFD. These effects of HFD were abolished in DARC–/– mice. In RBCs from HFD-fed wild-type and DARC–/– mice, levels of membrane cholesterol and phosphatidylserine externalization were increased, fostering RBC-macrophage inflammatory interactions and promoting macrophage phagocytosis in vitro. When labeled ex vivo and injected into wild-type mice, RBCs from HFD-fed mice exhibited ≈3-fold increase in splenic uptake. Finally, RBCs from HFD-fed mice induced increased macrophage adhesion to the endothelium when they were incubated with isolated aortic segments, indicating endothelial activation. Conclusions— RBC dysfunction, analogous to endothelial dysfunction, occurs early during diet-induced obesity and may serve as a mediator of atherosclerosis. These findings may have implications for the pathogenesis of atherosclerosis in obesity, a worldwide epidemic. # CLINICAL PERSPECTIVE {#article-title-42}Background— High-fat diet (HFD) promotes endothelial dysfunction and proinflammatory monocyte activation, which contribute to atherosclerosis in obesity. We investigated whether HFD also induces the dysfunction of red blood cells (RBCs), which serve as a reservoir for chemokines via binding to Duffy antigen receptor for chemokines (DARC). Methods and Results— A 60% HFD for 12 weeks, which produced only minor changes in lipid profile in C57/BL6 mice, markedly augmented the levels of monocyte chemoattractant protein-1 bound to RBCs, which in turn stimulated macrophage migration through an endothelial monolayer. Levels of RBC-bound KC were also increased by HFD. These effects of HFD were abolished in DARC–/– mice. In RBCs from HFD-fed wild-type and DARC–/– mice, levels of membrane cholesterol and phosphatidylserine externalization were increased, fostering RBC-macrophage inflammatory interactions and promoting macrophage phagocytosis in vitro. When labeled ex vivo and injected into wild-type mice, RBCs from HFD-fed mice exhibited ≈3-fold increase in splenic uptake. Finally, RBCs from HFD-fed mice induced increased macrophage adhesion to the endothelium when they were incubated with isolated aortic segments, indicating endothelial activation. Conclusions— RBC dysfunction, analogous to endothelial dysfunction, occurs early during diet-induced obesity and may serve as a mediator of atherosclerosis. These findings may have implications for the pathogenesis of atherosclerosis in obesity, a worldwide epidemic.


Circulation | 2015

Red Blood Cell Dysfunction Induced by High-Fat DietCLINICAL PERSPECTIVE

Dusten Unruh; Ramprasad Srinivasan; Tyler Benson; Stephen Haigh; Danielle Coyle; Neil Batra; Ryan Keil; Robert Sturm; Victor Blanco; Mary B. Palascak; Robert S. Franco; Wilson Tong; Tapan K. Chatterjee; David Y. Hui; W. Sean Davidson; Bruce J. Aronow; Theodosia A. Kalfa; David Manka; Abigail Peairs; Andra L. Blomkalns; David Fulton; Julia E. Brittain; Neal L. Weintraub; Vladimir Y. Bogdanov

Background— High-fat diet (HFD) promotes endothelial dysfunction and proinflammatory monocyte activation, which contribute to atherosclerosis in obesity. We investigated whether HFD also induces the dysfunction of red blood cells (RBCs), which serve as a reservoir for chemokines via binding to Duffy antigen receptor for chemokines (DARC). Methods and Results— A 60% HFD for 12 weeks, which produced only minor changes in lipid profile in C57/BL6 mice, markedly augmented the levels of monocyte chemoattractant protein-1 bound to RBCs, which in turn stimulated macrophage migration through an endothelial monolayer. Levels of RBC-bound KC were also increased by HFD. These effects of HFD were abolished in DARC–/– mice. In RBCs from HFD-fed wild-type and DARC–/– mice, levels of membrane cholesterol and phosphatidylserine externalization were increased, fostering RBC-macrophage inflammatory interactions and promoting macrophage phagocytosis in vitro. When labeled ex vivo and injected into wild-type mice, RBCs from HFD-fed mice exhibited ≈3-fold increase in splenic uptake. Finally, RBCs from HFD-fed mice induced increased macrophage adhesion to the endothelium when they were incubated with isolated aortic segments, indicating endothelial activation. Conclusions— RBC dysfunction, analogous to endothelial dysfunction, occurs early during diet-induced obesity and may serve as a mediator of atherosclerosis. These findings may have implications for the pathogenesis of atherosclerosis in obesity, a worldwide epidemic. # CLINICAL PERSPECTIVE {#article-title-42}Background— High-fat diet (HFD) promotes endothelial dysfunction and proinflammatory monocyte activation, which contribute to atherosclerosis in obesity. We investigated whether HFD also induces the dysfunction of red blood cells (RBCs), which serve as a reservoir for chemokines via binding to Duffy antigen receptor for chemokines (DARC). Methods and Results— A 60% HFD for 12 weeks, which produced only minor changes in lipid profile in C57/BL6 mice, markedly augmented the levels of monocyte chemoattractant protein-1 bound to RBCs, which in turn stimulated macrophage migration through an endothelial monolayer. Levels of RBC-bound KC were also increased by HFD. These effects of HFD were abolished in DARC–/– mice. In RBCs from HFD-fed wild-type and DARC–/– mice, levels of membrane cholesterol and phosphatidylserine externalization were increased, fostering RBC-macrophage inflammatory interactions and promoting macrophage phagocytosis in vitro. When labeled ex vivo and injected into wild-type mice, RBCs from HFD-fed mice exhibited ≈3-fold increase in splenic uptake. Finally, RBCs from HFD-fed mice induced increased macrophage adhesion to the endothelium when they were incubated with isolated aortic segments, indicating endothelial activation. Conclusions— RBC dysfunction, analogous to endothelial dysfunction, occurs early during diet-induced obesity and may serve as a mediator of atherosclerosis. These findings may have implications for the pathogenesis of atherosclerosis in obesity, a worldwide epidemic.


Circulation | 2015

Red Blood Cell Dysfunction Induced by High-Fat Diet

Dusten Unruh; Ramprasad Srinivasan; Tyler Benson; Stephen Haigh; Danielle Coyle; Neil Batra; Ryan Keil; Robert Sturm; Victor Blanco; Mary B. Palascak; Robert S. Franco; Wilson Tong; Tapan K. Chatterjee; David Y. Hui; W. Sean Davidson; Bruce J. Aronow; Theodosia A. Kalfa; David Manka; Abigail Peairs; Andra Blomkalns; David Fulton; Julia E. Brittain; Neal L. Weintraub; Vladimir Y. Bogdanov

Background— High-fat diet (HFD) promotes endothelial dysfunction and proinflammatory monocyte activation, which contribute to atherosclerosis in obesity. We investigated whether HFD also induces the dysfunction of red blood cells (RBCs), which serve as a reservoir for chemokines via binding to Duffy antigen receptor for chemokines (DARC). Methods and Results— A 60% HFD for 12 weeks, which produced only minor changes in lipid profile in C57/BL6 mice, markedly augmented the levels of monocyte chemoattractant protein-1 bound to RBCs, which in turn stimulated macrophage migration through an endothelial monolayer. Levels of RBC-bound KC were also increased by HFD. These effects of HFD were abolished in DARC–/– mice. In RBCs from HFD-fed wild-type and DARC–/– mice, levels of membrane cholesterol and phosphatidylserine externalization were increased, fostering RBC-macrophage inflammatory interactions and promoting macrophage phagocytosis in vitro. When labeled ex vivo and injected into wild-type mice, RBCs from HFD-fed mice exhibited ≈3-fold increase in splenic uptake. Finally, RBCs from HFD-fed mice induced increased macrophage adhesion to the endothelium when they were incubated with isolated aortic segments, indicating endothelial activation. Conclusions— RBC dysfunction, analogous to endothelial dysfunction, occurs early during diet-induced obesity and may serve as a mediator of atherosclerosis. These findings may have implications for the pathogenesis of atherosclerosis in obesity, a worldwide epidemic. # CLINICAL PERSPECTIVE {#article-title-42}Background— High-fat diet (HFD) promotes endothelial dysfunction and proinflammatory monocyte activation, which contribute to atherosclerosis in obesity. We investigated whether HFD also induces the dysfunction of red blood cells (RBCs), which serve as a reservoir for chemokines via binding to Duffy antigen receptor for chemokines (DARC). Methods and Results— A 60% HFD for 12 weeks, which produced only minor changes in lipid profile in C57/BL6 mice, markedly augmented the levels of monocyte chemoattractant protein-1 bound to RBCs, which in turn stimulated macrophage migration through an endothelial monolayer. Levels of RBC-bound KC were also increased by HFD. These effects of HFD were abolished in DARC–/– mice. In RBCs from HFD-fed wild-type and DARC–/– mice, levels of membrane cholesterol and phosphatidylserine externalization were increased, fostering RBC-macrophage inflammatory interactions and promoting macrophage phagocytosis in vitro. When labeled ex vivo and injected into wild-type mice, RBCs from HFD-fed mice exhibited ≈3-fold increase in splenic uptake. Finally, RBCs from HFD-fed mice induced increased macrophage adhesion to the endothelium when they were incubated with isolated aortic segments, indicating endothelial activation. Conclusions— RBC dysfunction, analogous to endothelial dysfunction, occurs early during diet-induced obesity and may serve as a mediator of atherosclerosis. These findings may have implications for the pathogenesis of atherosclerosis in obesity, a worldwide epidemic.


Cardiovascular Drugs and Therapy | 2018

Remote Effects of Transplanted Perivascular Adipose Tissue on Endothelial Function and Atherosclerosis

Tetsuo Horimatsu; Aaron S. Patel; Rosaria Prasad; Lauren E. Reid; Tyler Benson; Abdalrahman Zarzour; Mourad Ogbi; Thiago Bruder do Nascimento; Eric J. Belin de Chantemèle; Brian K. Stansfield; Xin-Yun Lu; Ha Won Kim; Neal L. Weintraub

Collaboration


Dive into the Tyler Benson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julia E. Brittain

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Vladimir Y. Bogdanov

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Fulton

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Dusten Unruh

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

Abigail Peairs

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

Bruce J. Aronow

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Danielle Coyle

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

David Manka

University of Cincinnati

View shared research outputs
Researchain Logo
Decentralizing Knowledge