Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tyler Blazey is active.

Publication


Featured researches published by Tyler Blazey.


The New England Journal of Medicine | 2012

Clinical and Biomarker Changes in Dominantly Inherited Alzheimer's Disease

Randall J. Bateman; Chengjie Xiong; Anne M. Fagan; Alison Goate; Nick C. Fox; Daniel S. Marcus; Nigel J. Cairns; Xianyun Xie; Tyler Blazey; David M. Holtzman; Anna Santacruz; Virginia Buckles; Angela Oliver; Krista L. Moulder; Paul S. Aisen; Bernardino Ghetti; William E. Klunk; Eric McDade; Ralph N. Martins; Colin L. Masters; Richard Mayeux; John M. Ringman; Peter R. Schofield; Reisa A. Sperling; Stephen Salloway; John C. Morris

BACKGROUND The order and magnitude of pathologic processes in Alzheimers disease are not well understood, partly because the disease develops over many years. Autosomal dominant Alzheimers disease has a predictable age at onset and provides an opportunity to determine the sequence and magnitude of pathologic changes that culminate in symptomatic disease. METHODS In this prospective, longitudinal study, we analyzed data from 128 participants who underwent baseline clinical and cognitive assessments, brain imaging, and cerebrospinal fluid (CSF) and blood tests. We used the participants age at baseline assessment and the parents age at the onset of symptoms of Alzheimers disease to calculate the estimated years from expected symptom onset (age of the participant minus parents age at symptom onset). We conducted cross-sectional analyses of baseline data in relation to estimated years from expected symptom onset in order to determine the relative order and magnitude of pathophysiological changes. RESULTS Concentrations of amyloid-beta (Aβ)(42) in the CSF appeared to decline 25 years before expected symptom onset. Aβ deposition, as measured by positron-emission tomography with the use of Pittsburgh compound B, was detected 15 years before expected symptom onset. Increased concentrations of tau protein in the CSF and an increase in brain atrophy were detected 15 years before expected symptom onset. Cerebral hypometabolism and impaired episodic memory were observed 10 years before expected symptom onset. Global cognitive impairment, as measured by the Mini-Mental State Examination and the Clinical Dementia Rating scale, was detected 5 years before expected symptom onset, and patients met diagnostic criteria for dementia at an average of 3 years after expected symptom onset. CONCLUSIONS We found that autosomal dominant Alzheimers disease was associated with a series of pathophysiological changes over decades in CSF biochemical markers of Alzheimers disease, brain amyloid deposition, and brain metabolism as well as progressive cognitive impairment. Our results require confirmation with the use of longitudinal data and may not apply to patients with sporadic Alzheimers disease. (Funded by the National Institute on Aging and others; DIAN ClinicalTrials.gov number, NCT00869817.).


Proceedings of the National Academy of Sciences of the United States of America | 2013

Regional variability of imaging biomarkers in autosomal dominant Alzheimer’s disease

Tammie L.S. Benzinger; Tyler Blazey; Clifford R. Jack; Robert A. Koeppe; Yi Su; Chengjie Xiong; Marcus E. Raichle; Abraham Z. Snyder; Beau M. Ances; Randall J. Bateman; Nigel J. Cairns; Anne M. Fagan; Alison Goate; Daniel S. Marcus; Paul S. Aisen; Jon Christensen; Lindsay Ercole; Russ C. Hornbeck; Angela M. Farrar; Patricia Aldea; Mateusz S. Jasielec; Christopher J. Owen; Xianyun Xie; Richard Mayeux; Adam M. Brickman; Eric McDade; William E. Klunk; Chester A. Mathis; John M. Ringman; Paul M. Thompson

Significance Beta-amyloid plaque accumulation, glucose hypometabolism, and neuronal atrophy are hallmarks of Alzheimer’s disease. However, the regional ordering of these biomarkers prior to dementia remains untested. In a cohort with Alzheimer’s disease mutations, we performed an integrated whole-brain analysis of three major imaging techniques: amyloid PET, [18F]fluro-deoxyglucose PET, and structural MRI. We found that most gray-matter structures with amyloid plaques later have hypometabolism followed by atrophy. Critically, however, not all regions lose metabolic function, and not all regions atrophy, even when there is significant amyloid deposition. These regional disparities have important implications for clinical trials of disease-modifying therapies. Major imaging biomarkers of Alzheimer’s disease include amyloid deposition [imaged with [11C]Pittsburgh compound B (PiB) PET], altered glucose metabolism (imaged with [18F]fluro-deoxyglucose PET), and structural atrophy (imaged by MRI). Recently we published the initial subset of imaging findings for specific regions in a cohort of individuals with autosomal dominant Alzheimer’s disease. We now extend this work to include a larger cohort, whole-brain analyses integrating all three imaging modalities, and longitudinal data to examine regional differences in imaging biomarker dynamics. The anatomical distribution of imaging biomarkers is described in relation to estimated years from symptom onset. Autosomal dominant Alzheimer’s disease mutation carrier individuals have elevated PiB levels in nearly every cortical region 15 y before the estimated age of onset. Reduced cortical glucose metabolism and cortical thinning in the medial and lateral parietal lobe appeared 10 and 5 y, respectively, before estimated age of onset. Importantly, however, a divergent pattern was observed subcortically. All subcortical gray-matter regions exhibited elevated PiB uptake, but despite this, only the hippocampus showed reduced glucose metabolism. Similarly, atrophy was not observed in the caudate and pallidum despite marked amyloid accumulation. Finally, before hypometabolism, a hypermetabolic phase was identified for some cortical regions, including the precuneus and posterior cingulate. Additional analyses of individuals in which longitudinal data were available suggested that an accelerated appearance of volumetric declines approximately coincides with the onset of the symptomatic phase of the disease.


Science Translational Medicine | 2013

Increased in Vivo Amyloid-β42 Production, Exchange, and Loss in Presenilin Mutation Carriers

Rachel Potter; Bruce W. Patterson; Donald L. Elbert; Vitaliy Ovod; Tom Kasten; Tyler Blazey; Alison Goate; Robert Chott; Kevin E. Yarasheski; David M. Holtzman; John C. Morris; Tammie L.S. Benzinger; Randall J. Bateman

Aβ42 kinetics are altered in the central nervous system of patients with autosomal dominant Alzheimer’s disease. Aβ42: A Cycle of Gain and Loss The amyloid hypothesis of Alzheimer’s disease (AD) proposes that increased production or impaired clearance of Aβ42 peptide causes deposition of amyloid in plaques, nerve destruction, and ultimately AD dementia. Animal model studies based on human autosomal dominant mutations have shown that increasing the production of Aβ peptides, especially Aβ42, can recapitulate amyloidosis. Potter et al. have now used a stable isotope labeling kinetics (SILK) approach to measure Aβ isoform kinetics to test specific hypotheses regarding the production rates of the Aβ38, Aβ40, and Aβ42 peptides in individuals carrying autosomal dominant AD mutations and related noncarriers. The authors found an increased Aβ42 production rate in AD mutation carriers that was ~25% higher than that in noncarriers. In addition to increased production rates, the authors unexpectedly found altered Aβ42 kinetics in mutation carriers that indicated both a reversible exchange pool and increased irreversible loss. Future studies could quantify the effects of proposed disease-modifying drugs to normalize altered Aβ kinetics and provide a metric to gauge target engagement for therapeutic trials. Alzheimer’s disease (AD) is hypothesized to be caused by an overproduction or reduced clearance of amyloid-β (Aβ) peptide. Autosomal dominant AD (ADAD) caused by mutations in the presenilin (PSEN) gene have been postulated to result from increased production of Aβ42 compared to Aβ40 in the central nervous system (CNS). This has been demonstrated in rodent models of ADAD but not in human mutation carriers. We used compartmental modeling of stable isotope labeling kinetic (SILK) studies in human carriers of PSEN mutations and related noncarriers to evaluate the pathophysiological effects of PSEN1 and PSEN2 mutations on the production and turnover of Aβ isoforms. We compared these findings by mutation status and amount of fibrillar amyloid deposition as measured by positron emission tomography (PET) using the amyloid tracer Pittsburgh compound B (PIB). CNS Aβ42 to Aβ40 production rates were 24% higher in mutation carriers compared to noncarriers, and this was independent of fibrillar amyloid deposits quantified by PET PIB imaging. The fractional turnover rate of soluble Aβ42 relative to Aβ40 was 65% faster in mutation carriers and correlated with amyloid deposition, consistent with increased deposition of Aβ42 into plaques, leading to reduced recovery of Aβ42 in cerebrospinal fluid (CSF). Reversible exchange of Aβ42 peptides with preexisting unlabeled peptide was observed in the presence of plaques. These findings support the hypothesis that Aβ42 is overproduced in the CNS of humans with PSEN mutations that cause AD, and demonstrate that soluble Aβ42 turnover and exchange processes are altered in the presence of amyloid plaques, causing a reduction in Aβ42 concentrations in the CSF.


PLOS ONE | 2013

Quantitative analysis of PiB-PET with FreeSurfer ROIs.

Yi Su; Gina D'Angelo; Andrei G. Vlassenko; Gongfu Zhou; Abraham Z. Snyder; Daniel S. Marcus; Tyler Blazey; Jon Christensen; Shivangi Vora; John C. Morris; Mark A. Mintun; Tammie L.S. Benzinger

In vivo quantification of β-amyloid deposition using positron emission tomography is emerging as an important procedure for the early diagnosis of the Alzheimers disease and is likely to play an important role in upcoming clinical trials of disease modifying agents. However, many groups use manually defined regions, which are non-standard across imaging centers. Analyses often are limited to a handful of regions because of the labor-intensive nature of manual region drawing. In this study, we developed an automatic image quantification protocol based on FreeSurfer, an automated whole brain segmentation tool, for quantitative analysis of amyloid images. Standard manual tracing and FreeSurfer-based analyses were performed in 77 participants including 67 cognitively normal individuals and 10 individuals with early Alzheimers disease. The manual and FreeSurfer approaches yielded nearly identical estimates of amyloid burden (intraclass correlation = 0.98) as assessed by the mean cortical binding potential. An MRI test-retest study demonstrated excellent reliability of FreeSurfer based regional amyloid burden measurements. The FreeSurfer-based analysis also revealed that the majority of cerebral cortical regions accumulate amyloid in parallel, with slope of accumulation being the primary difference between regions.


NeuroImage | 2015

Partial volume correction in quantitative amyloid imaging.

Yi Su; Tyler Blazey; Abraham Z. Snyder; Marcus E. Raichle; Daniel S. Marcus; Beau M. Ances; Randall J. Bateman; Nigel J. Cairns; Patricia Aldea; Lisa Cash; Jon Christensen; Karl A. Friedrichsen; Russ C. Hornbeck; Angela M. Farrar; Christopher J. Owen; Richard Mayeux; Adam M. Brickman; William E. Klunk; Julie C. Price; Paul M. Thompson; Bernardino Ghetti; Andrew J. Saykin; Reisa A. Sperling; Keith Johnson; Peter R. Schofield; Virginia Buckles; John C. Morris; Tammie L.S. Benzinger

Amyloid imaging is a valuable tool for research and diagnosis in dementing disorders. As positron emission tomography (PET) scanners have limited spatial resolution, measured signals are distorted by partial volume effects. Various techniques have been proposed for correcting partial volume effects, but there is no consensus as to whether these techniques are necessary in amyloid imaging, and, if so, how they should be implemented. We evaluated a two-component partial volume correction technique and a regional spread function technique using both simulated and human Pittsburgh compound B (PiB) PET imaging data. Both correction techniques compensated for partial volume effects and yielded improved detection of subtle changes in PiB retention. However, the regional spread function technique was more accurate in application to simulated data. Because PiB retention estimates depend on the correction technique, standardization is necessary to compare results across groups. Partial volume correction has sometimes been avoided because it increases the sensitivity to inaccuracy in image registration and segmentation. However, our results indicate that appropriate PVC may enhance our ability to detect changes in amyloid deposition.


PLOS ONE | 2013

Effects of White Matter Injury on Resting State fMRI Measures in Prematurely Born Infants

Christopher D. Smyser; Abraham Z. Snyder; Joshua S. Shimony; Tyler Blazey; Terrie E. Inder; Jeffrey J. Neil

The cerebral white matter is vulnerable to injury in very preterm infants (born prior to 30 weeks gestation), resulting in a spectrum of lesions. These range from severe forms, including cystic periventricular leukomalacia and periventricular hemorrhagic infarction, to minor focal punctate lesions. Moderate to severe white matter injury in preterm infants has been shown to predict later neurodevelopmental disability, although outcomes can vary widely in infants with qualitatively comparable lesions. Resting state functional connectivity magnetic resonance imaging has been increasingly utilized in neurodevelopmental investigations and may provide complementary information regarding the impact of white matter injury on the developing brain. We performed resting state functional connectivity magnetic resonance imaging at term equivalent postmenstrual age in fourteen preterm infants with moderate to severe white matter injury secondary to periventricular hemorrhagic infarction. In these subjects, resting state networks were identifiable throughout the brain. Patterns of aberrant functional connectivity were observed and depended upon injury severity. Comparisons were performed against data obtained from prematurely-born infants with mild white matter injury and healthy, term-born infants and demonstrated group differences. These results reveal structural-functional correlates of preterm white matter injury and carry implications for future investigations of neurodevelopmental disability.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Lag threads organize the brain’s intrinsic activity

Anish Mitra; Abraham Z. Snyder; Tyler Blazey; Marcus E. Raichle

Significance It is well known that slow intrinsic activity, as measured by resting-state fMRI in a variety of animals including humans, is organized into temporally synchronous networks. The question of whether intrinsic activity contains reproducible temporal sequences has received far less attention. We have previously shown that human resting-state fMRI contains a highly reproducible lag structure. Here, we demonstrate that this lag structure is of high dimensionality and consists of multiple highly reproducible temporal sequences, which we term “lag threads.” Moreover, we demonstrate that the well-known zero-lag temporal correlation structure of intrinsic activity emerges as a consequence of lag structure. Thus, lag threads may represent a fundamental and previously unsuspected level of organization in resting-state activity. It has been widely reported that intrinsic brain activity, in a variety of animals including humans, is spatiotemporally structured. Specifically, propagated slow activity has been repeatedly demonstrated in animals. In human resting-state fMRI, spontaneous activity has been understood predominantly in terms of zero-lag temporal synchrony within widely distributed functional systems (resting-state networks). Here, we use resting-state fMRI from 1,376 normal, young adults to demonstrate that multiple, highly reproducible, temporal sequences of propagated activity, which we term “lag threads,” are present in the brain. Moreover, this propagated activity is largely unidirectional within conventionally understood resting-state networks. Modeling experiments show that resting-state networks naturally emerge as a consequence of shared patterns of propagation. An implication of these results is that common physiologic mechanisms may underlie spontaneous activity as imaged with fMRI in humans and slowly propagated activity as studied in animals.


Brain | 2016

The relationship between cerebrospinal fluid markers of Alzheimer pathology and positron emission tomography tau imaging

Brian A. Gordon; Karl A. Friedrichsen; Matthew R. Brier; Tyler Blazey; Yi Su; Jon Christensen; Patricia Aldea; Jonathan McConathy; David M. Holtzman; Nigel J. Cairns; John C. Morris; Anne M. Fagan; Beau M. Ances; Tammie L.S. Benzinger

The two primary molecular pathologies in Alzheimers disease are amyloid-β plaques and tau-immunoreactive neurofibrillary tangles. Investigations into these pathologies have been restricted to cerebrospinal fluid assays, and positron emission tomography tracers that can image amyloid-β plaques. Tau tracers have recently been introduced into the field, although the utility of the tracer and its relationship to other Alzheimer biomarkers are still unknown. Here we examined tau deposition in 41 cognitively normal and 11 cognitively impaired older adults using the radioactive tau ligand (18)F-AV-1451 (previously known as T807) who also underwent a lumbar puncture to assess cerebrospinal fluid levels of total tau (t-tau), phosphorylated tau181 (p-tau181) and amyloid-β42 Voxel-wise statistical analyses examined spatial patterns of tau deposition associated with cognitive impairment. We then related the amount of tau tracer uptake to levels of cerebrospinal fluid biomarkers. All analyses controlled for age and gender and, when appropriate, the time between imaging and lumbar puncture assessments. Symptomatic individuals (Clinical Dementia Rating > 0) demonstrated markedly increased levels of tau tracer uptake. This elevation was most prominent in the temporal lobe and temporoparietal junction, but extended more broadly into parietal and frontal cortices. In the entire cohort, there were significant relationships among all cerebrospinal fluid biomarkers and tracer uptake, notably for tau-related cerebrospinal fluid markers. After controlling for levels of amyloid-β42, the correlations with tau uptake were r = 0.490 (P < 0.001) for t-tau and r = 0.492 (P < 0.001) for p-tau181 Within the cognitively normal cohort, levels of amyloid-β42, but not t-tau or p-tau181, were associated with elevated tracer binding that was confined primarily to the medial temporal lobe and adjacent neocortical regions. AV-1451 tau binding in the medial temporal, parietal, and frontal cortices is correlated with tau-related cerebrospinal fluid measures. In preclinical Alzheimers disease, there is focal tauopathy in the medial temporal lobes and adjacent cortices.


JAMA Neurology | 2014

Functional connectivity in autosomal dominant and late-onset Alzheimer disease.

Jewell B. Thomas; Matthew R. Brier; Randall J. Bateman; Abraham Z. Snyder; Tammie L.S. Benzinger; Chengjie Xiong; Marcus E. Raichle; David M. Holtzman; Reisa A. Sperling; Richard Mayeux; Bernardino Ghetti; John M. Ringman; Stephen Salloway; Eric McDade; Sebastien Ourselin; Peter R. Schofield; Colin L. Masters; Ralph N. Martins; Michael W. Weiner; Paul M. Thompson; Nick C. Fox; Robert A. Koeppe; Clifford R. Jack; Chester A. Mathis; Angela Oliver; Tyler Blazey; Krista L. Moulder; Virginia Buckles; Russ C. Hornbeck; Jasmeer P. Chhatwal

IMPORTANCE Autosomal dominant Alzheimer disease (ADAD) is caused by rare genetic mutations in 3 specific genes in contrast to late-onset Alzheimer disease (LOAD), which has a more polygenetic risk profile. OBJECTIVE To assess the similarities and differences in functional connectivity changes owing to ADAD and LOAD. DESIGN, SETTING, AND PARTICIPANTS We analyzed functional connectivity in multiple brain resting state networks (RSNs) in a cross-sectional cohort of participants with ADAD (n = 79) and LOAD (n = 444), using resting-state functional connectivity magnetic resonance imaging at multiple international academic sites. MAIN OUTCOMES AND MEASURES For both types of AD, we quantified and compared functional connectivity changes in RSNs as a function of dementia severity measured by the Clinical Dementia Rating Scale. In ADAD, we qualitatively investigated functional connectivity changes with respect to estimated years from onset of symptoms within 5 RSNs. RESULTS A decrease in functional connectivity with increasing Clinical Dementia Rating scores were similar for both LOAD and ADAD in multiple RSNs. Ordinal logistic regression models constructed in one type of Alzheimer disease accurately predicted clinical dementia rating scores in the other, further demonstrating the similarity of functional connectivity loss in each disease type. Among participants with ADAD, functional connectivity in multiple RSNs appeared qualitatively lower in asymptomatic mutation carriers near their anticipated age of symptom onset compared with asymptomatic mutation noncarriers. CONCLUSIONS AND RELEVANCE Resting-state functional connectivity magnetic resonance imaging changes with progressing AD severity are similar between ADAD and LOAD. Resting-state functional connectivity magnetic resonance imaging may be a useful end point for LOAD and ADAD therapy trials. Moreover, the disease process of ADAD may be an effective model for the LOAD disease process.


Neurology | 2015

Spatially distinct atrophy is linked to β-amyloid and tau in preclinical Alzheimer disease

Liang Wang; Tammie L.S. Benzinger; Jason Hassenstab; Tyler Blazey; Christopher J. Owen; Jingxia Liu; Anne M. Fagan; John C. Morris; Beau M. Ances

Objectives: To determine whether an MRI-based Alzheimer disease (AD) signature biomarker can detect tau-related neurodegeneration in preclinical AD, and to assess whether AD signature cortical thinning is associated with cognitive changes in cognitively normal (CN) older individuals. Methods: In a large cohort of CN individuals (n = 188), we measured the hippocampal volume and cortical thickness within independently defined AD signature regions. We cross-sectionally assessed the associations between AD signature cortical thinning or hippocampal atrophy with CSF biomarkers of tau (increased tau) and β-amyloid (Aβ) (decreased Aβ42). We also examined the impact of AD signature cortical thinning or other biomarker changes (i.e., hippocampal atrophy, reduced CSF Aβ42, or increased CSF tau) on cognitive performance in CN individuals. Results: Elevated CSF tau was associated with AD signature cortical thinning but not hippocampal atrophy. In contrast, decreased CSF Aβ42 was associated with hippocampal loss but not AD signature cortical thinning. In addition, AD signature cortical thinning was associated with lower visuospatial performance. Reduced CSF Aβ42 was related to poorer performance on episodic memory. Conclusions: Spatially distinct neurodegeneration is associated with Aβ and tau pathology in preclinical AD. Aβ deposition and AD signature cortical atrophy independently affect cognition in CN older individuals.

Collaboration


Dive into the Tyler Blazey's collaboration.

Top Co-Authors

Avatar

John C. Morris

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Tammie L.S. Benzinger

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Yi Su

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Beau M. Ances

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Russ C. Hornbeck

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Marcus E. Raichle

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Brian A. Gordon

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Abraham Z. Snyder

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Andrei G. Vlassenko

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Anne M. Fagan

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge