Tyler J. Buchinger
Michigan State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tyler J. Buchinger.
Chemical Senses | 2014
Tyler J. Buchinger; Weiming Li; Nicholas S. Johnson
Bile salts are potent olfactory stimuli in fishes; however the biological functions driving such sensitivity remain poorly understood. We provide an integrative review of bile salts as semiochemicals in fish. First, we present characteristics of bile salt structure, metabolism, and function that are particularly relevant to chemical communication. Bile salts display a systematic pattern of structural variation across taxa, are efficiently synthesized, and are stable in the environment. Bile salts are released into the water via the intestine, urinary tract, or gills, and are highly water soluble. Second, we consider the potential role of bile salts as semiochemicals in the contexts of detecting nearby fish, foraging, assessing risk, migrating, and spawning. Lastly, we suggest future studies on bile salts as semiochemicals further characterize release into the environment, behavioral responses by receivers, and directly test the biological contexts underlying olfactory sensitivity.
Journal of Fish Biology | 2012
Nicholas S. Johnson; Sang-Seon Yun; Tyler J. Buchinger; Weiming Li
The role of the C24 sulphate in the mating pheromone component, 7α,12α,24-trihydroxy-5α-cholan-3-one 24-sulphate (3kPZS), to specifically induce upstream movement in ovulated female sea lampreys Petromyzon marinus was investigated. 7α,12α-dihydroxy-5α-cholan-3-one 24-oic acid (3kACA), a structurally similar bile acid released by spermiated males, but lacking the C24 sulphate ester, was tested in bioassays at concentrations between 10(-11) and 10(-14) molar (M). 3kACA did not induce upstream movement in females or additional reproductive behaviours. In contrast, spermiated male washings induced upstream movement, prolonged retention on a nest and induced an array of nesting behaviours. Differential extraction and elution by solid-phase extraction resins showed that components other than 3kPZS + 3kACA are necessary to retain females on nests and induce nest cleaning behaviours. All pheromone components, including components in addition to 3kPZS + 3kACA that retain females and induce nest cleaning behaviours were released from the anterior region of the males, as had been reported for 3kPZS. It is concluded that the sea lamprey male mating pheromone has multiple functions and is composed of multiple components.
Frontiers in Zoology | 2015
Tyler J. Buchinger; Michael J. Siefkes; Barbara S. Zielinski; Cory O. Brant; Weiming Li
Chemical cues and pheromones guide decisions in organisms throughout the animal kingdom. The neurobiology, function, and evolution of olfaction are particularly well described in insects, and resulting concepts have driven novel approaches to pest control. However, aside from several exceptions, the olfactory biology of vertebrates remains poorly understood. One exception is the sea lamprey (Petromyzon marinus), which relies heavily upon olfaction during reproduction. Here, we provide a broad review of the chemical cues and pheromones used by the sea lamprey during reproduction, including overviews of the sea lamprey olfactory system, chemical cues and pheromones, and potential applications to population management. The critical role of olfaction in mediating the sea lamprey life cycle is evident by a well-developed olfactory system. Sea lamprey use chemical cues and pheromones to identify productive spawning habitat, coordinate spawning behaviors, and avoid risk. Manipulation of olfactory biology offers opportunities for management of populations in the Laurentian Great Lakes, where the sea lamprey is a destructive invader. We suggest that the sea lamprey is a broadly useful organism with which to study vertebrate olfaction because of its simple but well-developed olfactory organ, the dominant role of olfaction in guiding behaviors during reproduction, and the direct implications for vertebrate pest management.
Proceedings of the Royal Society of London B: Biological Sciences | 2013
Tyler J. Buchinger; Huiyong Wang; Weiming Li; Nicholas S. Johnson
Receiver bias models suggest that a male sexual signal became exaggerated to match a pre-existing sensory, perceptual or cognitive disposition of the female. Accordingly, these models predict that females of related taxa possessing the ancestral state of signalling evolved preference for the male trait in a non-sexual context. We postulated that female preference for the male-released bile alcohol mating pheromone, 3 keto petromyzonol sulfate (3kPZS), of the sea lamprey (Petromyzon marinus) evolved as a result of a receiver bias. In particular, we propose that migratory silver lamprey (Ichthyomyzon unicuspis), a basal member of the Petromyzontidae, evolved a preference for 3kPZS released by stream-resident larvae as a means of identifying productive habitat for offspring. Larval silver lamprey released 3kPZS at rates sufficient to be detected by migratory lampreys. Females responded to 3kPZS by exhibiting upstream movement behaviours relevant in a migratory context, but did not exhibit proximate behaviours important to mate search and spawning. Male silver lamprey did not release 3kPZS at rates sufficient to be detected by females in natural high-volume stream environments. We infer that female silver lamprey cue onto 3kPZS excreted by stream-resident larvae as a mechanism to locate habitat conducive to offspring survival and that males do not signal with 3kPZS. We suggest that this female preference for a male signal in a non-sexual context represents a bias leading to the sexual signalling observed in sea lamprey.
Archive | 2015
Nicholas S. Johnson; Tyler J. Buchinger; Weiming Li
Lampreys typically spawn in riffle habitats during the spring. Spawning activity and diel (i.e., during daylight and at night) behavioral patterns are initiated when spring water temperatures increase to levels that coincide with optimal embryologic development. Nests are constructed in gravel substrate using the oral disc to move stones and the tail to fan sediment out of the nest. Spawning habitat used by individual species is generally a function of adult size, where small-bodied species construct nests in shallower water with slower flow and smaller gravel than large-bodied species. The mating system of lampreys is primarily polygynandrous (i.e., where multiple males mate with multiple females). Lamprey species with adult total length less than 30 cm generally spawn communally, where a nest may contain 20 or more individuals of both sexes. Lamprey species with adult sizes greater than 35 cm generally spawn in groups of two to four. Operational sex ratios of lampreys are highly variable across species, populations, and time, but are generally male biased. The act of spawning typically starts with the male attaching with his oral disc to the back of the female’s head; the male and female then entwine and simultaneously release gametes. However, alternative mating behaviors (e.g., release of gametes without paired courtship and sneaker males) have been observed. Future research should determine how multiple modalities of communication among lampreys (including mating pheromones) are integrated to inform species recognition and mate choice. Such research could inform both sea lamprey control strategies and provide insight into possible evolution of reproductive isolation mechanisms between paired lamprey species in sympatry.
The Journal of Experimental Biology | 2017
Tyler J. Buchinger; Ke Li; Mar Huertas; Cindy F. Baker; Liang Jia; Michael C. Hayes; Weiming Li; Nicholas S. Johnson
ABSTRACT Animals rely on a mosaic of complex information to find and evaluate mates. Pheromones, often consisting of multiple components, are considered to be particularly important for species-recognition in many species. Although the evolution of species-specific pheromone blends is well described in many insects, very few vertebrate pheromones have been studied in a macro-evolutionary context. Here, we report a phylogenetic comparison of multi-component male odours that guide reproduction in lampreys. Chemical profiling of sexually mature males from eleven species of lamprey, representing six of ten genera and two of three families, indicated that the chemical profiles of sexually mature male odours are partially shared among species. Behavioural assays conducted with four species sympatric in the Laurentian Great Lakes indicated asymmetric female responses to heterospecific odours, where Petromyzon marinus were attracted to male odour collected from all species tested, but other species generally preferred only the odour of conspecifics. Electro-olfactogram recordings from P. marinus indicated that although P. marinus exhibited behavioural responses to odours from males of all species, at least some of the compounds that elicited olfactory responses were different in conspecific male odours compared with heterospecific male odours. We conclude that some of the compounds released by sexually mature males are shared among species and elicit olfactory and behavioural responses in P. marinus, and suggest that our results provide evidence for partial overlap of male olfactory cues among lampreys. Further characterization of the chemical identities of odour components is needed to confirm shared pheromones among species. Summary: Olfactory cues, critical to the behaviour and physiology of sea lamprey (Petromyzon marinus), exhibit partial overlap among lamprey species.
Journal of Chromatography B | 2015
Ke Li; Tyler J. Buchinger; Ugo Bussy; Skye D. Fissette; Nicholas S. Johnson; Weiming Li
Many fishes are hypothesized to use bile acids (BAs) as chemical cues, yet quantification of BAs in biological samples and the required methods remain limited. Here, we present an UHPLC-MS/MS method for simultaneous, sensitive, and rapid quantification of 15 BAs, including free, taurine, and glycine conjugated BAs, and application of the method to fecal samples from lake charr (Salvelinus namaycush). The analytes were separated on a C18 column with acetonitrile-water (containing 7.5mM ammonium acetate and 0.1% formic acid) as mobile phase at a flow rate of 0.25mL/min for 12min. BAs were monitored with a negative electrospray triple quadrupole mass spectrometer (Xevo TQ-S™). Calibration curves of 15 BAs were linear over the concentration range of 1.00-5,000ng/mL. Validation revealed that the method was specific, accurate, and precise. The method was applied to quantitative analysis of feces extract of fry lake charr and the food they were eating. The concentrations of analytes CA, TCDCA, TCA, and CDCA were 242.3, 81.2, 60.7, and 36.2ng/mg, respectively. However, other taurine conjugated BAs, TUDCA, TDCA, and THDCA, were not detected in feces of lake charr. Interestingly, TCA and TCDCA were detected at high concentrations in food pellets, at 71.9 and 38.2ng/mg, respectively. Application of the method to feces samples from lake charr supported a role of BAs as chemical cues, and will enhance further investigation of BAs as chemical cues in other fish species.
Mitochondrial DNA | 2014
Jianfeng Ren; Tyler J. Buchinger; Jiafei Pu; Liang Jia; Weiming Li
Abstract The complete mitogenomes of paired species northern brook lamprey (Ichthyomyzon fossor) and silver lamprey (I. unicuspis) is reported. The two mitogenomes show a 13 bp length difference on the tRNA-Gly and two control regions. The gene order and contents are conserved in the two lampreys and identical to the lamprey mitogenomes published. Except for three indel polymorphic sites, there are 27 SNP sites which are all synonymous substitution sites and occurred on 9 protein-coding genes, two rRNAs and one tRNA. The control region1 contains six consecutive 39-nt repetitive strings in both lampreys. A 7-nt repetitive string in the control region2 is repeated 3 and 5 times in northern brook lamprey and silver lamprey, respectively. The observed level of similarity between nucleotide sequences (99.74%) is consistent with the hypothesis that northern brook lamprey and silver lamprey represent two ecotypes of one species.
Steroids | 2017
Ugo Bussy; Yu Wen Chung-Davidson; Tyler J. Buchinger; Ke Li; Weiming Li
&NA; This article describes the development and validation of a sensitive LC–MSMS method for determination of estrogen in fish plasma. Dansyl chloride derivatization of the phenol functional group in estrogen was used to enhance the response to atmospheric pressure ionization leading to improve the sensitivity. Individual 13C internal standards were selected after comparison with deuterated standards. Liquid‐liquid extraction (ethyl acetate or methyl tert‐butyl ether) and protein precipitation (acetonitrile, methanol or acetone) were compared for the extraction and clean‐up of estrogens from fish plasma. Ethyl acetate was selected as the best alternative with recovery ranging from 61 to 96% and matrix effect ranging from 88 to 106%. Limits of quantification ranged from 0.5 to 1 pg/mL showing a gain in sensitivity of 10,000 times over electrospray ionization of underivatized estrogens. Accuracy and precision were validated over three consecutive days and the method was applied to measure estrogen in sea lamprey (Petromyzon marinus) and lake trout (Salvelinus namaycush) plasma. Estrone and estriol were detected in fish below 1 ng/mL in plasma, justifying the need of a highly sensitive LC–MSMS quantification method. Graphical abstract Figure. No caption available. HighlightsDetermination of estrogen using dansyl chloride derivatization and UHPLC–MSMS.Full method validation for the determination of fish plasma matrix.Application to real samples showed sex differences in endogenous estrogen concentrations.
Analytical and Bioanalytical Chemistry | 2018
Ugo Bussy; Yu Wen Chung-Davidson; Tyler J. Buchinger; Ke Li; Scott A. Smith; A. Daniel Jones; Weiming Li
The sea lamprey (Petromyzon marinus) is a destructive invasive species in the Great Lakes. Since the 1960s, tons of the lampricide 3-trifluoromethyl-4-nitrophenol (TFM) has been applied to selected tributaries each year to eliminate or reduce sea lamprey larval populations. Therefore, the environmental impact of TFM needs to be evaluated. However, the metabolism of TFM and its mechanism of selective toxicity in sea lamprey is not yet fully understood. Based upon our previous report on the identification, synthesis, and characterization of TFM metabolites observed in liver incubates from sea lamprey and non-target fishes, we now provide a robust assay for quantifying TFM and its metabolites in fish liver tissue. This method is important for assessing bioaccumulation of TFM in the ecosystems. The compounds purified in our previous report were used to develop and validate a quantitative ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC-MS/MS) assay for TFM and TFM metabolites formed in vivo. Several sample preparation techniques were compared, and a protein precipitation method was selected. The unavailability of stable isotopic internal standards was overcome by using a matrix matching method. After a thorough validation, this method was applied to determine the concentrations of TFM and its metabolites in fish liver tissues from animals exposed to TFM, and in the comparison between dead animals and survivors. Seven of eight expected metabolites were observed, some for the first time in vivo. Our results indicate that in vivo nitroreduction, glucuronidation, sulfation, and glutathione conjugation are involved in TFM metabolism in sea lamprey.