Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tyler J. Wellman is active.

Publication


Featured researches published by Tyler J. Wellman.


Critical Care Medicine | 2014

Effect of local tidal lung strain on inflammation in normal and lipopolysaccharide-exposed sheep*.

Tyler J. Wellman; Tilo Winkler; Eduardo Leite Vieira Costa; Guido Musch; R. Scott Harris; Hui Zheng; Jose G. Venegas; Marcos F. Vidal Melo

Objectives:Regional tidal lung strain may trigger local inflammation during mechanical ventilation, particularly when additional inflammatory stimuli are present. However, it is unclear whether inflammation develops proportionally to tidal strain or only above a threshold. We aimed to 1) assess the relationship between regional tidal strain and local inflammation in vivo during the early stages of lung injury in lungs with regional aeration heterogeneity comparable to that of humans and 2) determine how this strain-inflammation relationship is affected by endotoxemia. Design:Interventional animal study. Setting:Experimental laboratory and PET facility. Subjects:Eighteen 2- to 4-month-old sheep. Interventions:Three groups of sheep (n = 6) were mechanically ventilated to the same plateau pressure (30–32 cm H2O) with high-strain (VT = 18.2 ± 6.5 mL/kg, positive end-expiratory pressure = 0), high-strain plus IV lipopolysaccharide (VT = 18.4 ± 4.2 mL/kg, positive end-expiratory pressure = 0), or low-strain plus lipopolysaccharide (VT = 8.1 ± 0.2 mL/kg, positive end-expiratory pressure = 17 ± 3 cm H2O). At baseline, we acquired respiratory-gated PET scans of inhaled 13NN to measure tidal strain from end-expiratory and end-inspiratory images in six regions of interest. After 3 hours of mechanical ventilation, dynamic [18F]fluoro-2-deoxy-D-glucose scans were acquired to quantify metabolic activation, indicating local neutrophilic inflammation, in the same regions of interest. Measurements and Main Results:Baseline regional tidal strain had a significant effect on [18F]fluoro-2-deoxy-D-glucose net uptake rate Ki in high-strain lipopolysaccharide (p = 0.036) and on phosphorylation rate k3 in high-strain (p = 0.027) and high-strain lipopolysaccharide (p = 0.004). Lipopolysaccharide exposure increased the k3-tidal strain slope three-fold (p = 0.009), without significant lung edema. The low-strain lipopolysaccharide group showed lower baseline regional tidal strain (0.33 ± 0.17) than high-strain (1.21 ± 0.62; p < 0.001) or high-strain lipopolysaccharide (1.26 ± 0.44; p < 0.001) and lower k3 (p < 0.001) and Ki (p < 0.05) than high-strain lipopolysaccharide. Conclusions:Local inflammation develops proportionally to regional tidal strain during early lung injury. The regional inflammatory effect of strain is greatly amplified by IV lipopolysaccharide. Tidal strain enhances local [18F]fluoro-2-deoxy-D-glucose uptake primarily by increasing the rate of intracellular [18F]fluoro-2-deoxy-D-glucose phosphorylation.


The Journal of Nuclear Medicine | 2010

Measurement of Regional Specific Lung Volume Change Using Respiratory-Gated PET of Inhaled 13N-Nitrogen

Tyler J. Wellman; Tilo Winkler; Eduardo Leite Vieira Costa; Guido Musch; R. Scott Harris; Jose G. Venegas; Marcos F. Vidal Melo

Regional specific lung volume change (sVol), defined as the regional tidal volume divided by the regional end-expiratory gas volume, is a key variable in lung mechanics and in the pathogenesis of ventilator-induced lung injury. Despite the usefulness of PET to study regional lung function, there is no established method to assess sVol with PET. We present a method to measure sVol from respiratory-gated PET images of inhaled 13N-nitrogen (13NN), validate the method against regional specific ventilation (\batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{s{\dot{V}}}\) \end{document}), and study the effect of region-of-interest (ROI) volume and orientation on the sVol–\batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{s{\dot{V}}}\) \end{document} relationship. Methods: Four supine sheep were mechanically ventilated (tidal volume VT = 8 mL/kg, respiratory rate adjusted to normocapnia) at low (n = 2, positive end-expiratory pressure = 0) and high (n = 2, positive end-expiratory pressure adjusted to achieve a plateau pressure of 30 cm H2O) lung volumes. Respiratory-gated PET scans were obtained after inhaled 13NN equilibration both at baseline and after a period of mechanical ventilation. We calculated sVol from 13NN-derived regional fractional gas content at end-inspiration (FEI) and end-expiration (FEE) using the formula sVol = (FEI − FEE)/(FEE[1 − FEI]). \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{s{\dot{V}}}\) \end{document} was computed as the inverse of the subsequent 13NN washout curve time constant. ROIs were defined by dividing the lung field with equally spaced coronal, sagittal, and transverse planes, perpendicular to the ventrodorsal, laterolateral, and cephalocaudal axes, respectively. Results: sVol–\batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(s\mathrm{{\dot{V}}}\) \end{document} linear regressions for ROIs based on the ventrodorsal axis yielded the highest R2 (range, 0.71–0.92 for mean ROI volumes from 7 to 162 mL), the cephalocaudal axis the next highest (R2 = 0.77–0.88 for mean ROI volumes from 38 to 162 mL), and the laterolateral axis the lowest (R2 = 0.65–0.83 for mean ROI volumes from 8 to 162 mL). ROIs based on the ventrodorsal axis yielded lower standard errors of estimates of sVol from \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{s{\dot{V}}}\) \end{document} than those based on the laterolateral axis or the cephalocaudal axis. Conclusion: sVol can be computed with PET using the proposed method and is highly correlated with \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{s{\dot{V}}}\) \end{document}. Errors in sVol are smaller for larger ROIs and for orientations based on the ventrodorsal axis.


Journal of Applied Physiology | 2012

Effect of regional lung inflation on ventilation heterogeneity at different length scales during mechanical ventilation of normal sheep lungs

Tyler J. Wellman; Tilo Winkler; Eduardo Leite Vieira Costa; Guido Musch; R. Scott Harris; Jose G. Venegas; Marcos F. Vidal Melo

Heterogeneous, small-airway diameters and alveolar derecruitment in poorly aerated regions of normal lungs could produce ventilation heterogeneity at those anatomic levels. We modeled the washout kinetics of (13)NN with positron emission tomography to examine how specific ventilation (sV) heterogeneity at different length scales is influenced by lung aeration. Three groups of anesthetized, supine sheep were studied: high tidal volume (Vt; 18.4 ± 4.2 ml/kg) and zero end-expiratory pressure (ZEEP) (n = 6); low Vt (9.2 ± 1.0 ml/kg) and ZEEP (n = 6); and low Vt (8.2 ± 0.2 ml/kg) and positive end-expiratory pressure (PEEP; 19 ± 1 cmH(2)O) (n = 4). We quantified fractional gas content with transmission scans, and sV with emission scans of infused (13)NN-saline. Voxel (13)NN-washout curves were fit with one- or two-compartment models to estimate sV. Total heterogeneity, measured as SD[log(10)(sV)], was divided into length-scale ranges by measuring changes in variance of log(10)(sV), resulting from progressive filtering of sV images. High-Vt ZEEP showed higher sV heterogeneity at <12- (P < 0.01), 12- to 36- (P < 0.01), and 36- to 60-mm (P < 0.05) length scales compared with low-Vt PEEP, with low-Vt ZEEP in between. Increased heterogeneity was associated with the emergence of low sV units in poorly aerated regions, with a high correlation (r = 0.95, P < 0.001) between total heterogeneity and the fraction of lung with slow washout. Regional mean fractional gas content was inversely correlated with regional sV heterogeneity at <12- (r = -0.67), 12- to 36- (r = -0.74), and >36-mm (r = -0.72) length scales (P < 0.001). We conclude that sV heterogeneity at length scales <60 mm increases in poorly aerated regions of mechanically ventilated normal lungs, likely due to heterogeneous small-airway narrowing and alveolar derecruitment. PEEP reduces sV heterogeneity by maintaining lung expansion and airway patency at those small length scales.


Journal of Applied Physiology | 2011

Effects of surfactant depletion on regional pulmonary metabolic activity during mechanical ventilation.

Nicolas de Prost; Eduardo Leite Vieira Costa; Tyler J. Wellman; Guido Musch; Tilo Winkler; Mauro R. Tucci; R. Scott Harris; Jose G. Venegas; Marcos F. Vidal Melo

Inflammation during mechanical ventilation is thought to depend on regional mechanical stress. This can be produced by concentration of stresses and cyclic recruitment in low-aeration dependent lung. Positron emission tomography (PET) with (18)F-fluorodeoxyglucose ((18)F-FDG) allows for noninvasive assessment of regional metabolic activity, an index of neutrophilic inflammation. We tested the hypothesis that, during mechanical ventilation, surfactant-depleted low-aeration lung regions present increased regional (18)F-FDG uptake suggestive of in vivo increased regional metabolic activity and inflammation. Sheep underwent unilateral saline lung lavage and were ventilated supine for 4 h (positive end-expiratory pressure = 10 cmH(2)O, tidal volume adjusted to plateau pressure = 30 cmH(2)O). We used PET scans of injected (13)N-nitrogen to compute regional perfusion and ventilation and injected (18)F-FDG to calculate (18)F-FDG uptake rate. Regional aeration was quantified with transmission scans. Whole lung (18)F-FDG uptake was approximately two times higher in lavaged than in nonlavaged lungs (2.9 ± 0.6 vs. 1.5 ± 0.3 10(-3)/min; P < 0.05). The increased (18)F-FDG uptake was topographically heterogeneous and highest in dependent low-aeration regions (gas fraction 10-50%, P < 0.001), even after correction for lung density and wet-to-dry lung ratios. (18)F-FDG uptake in low-aeration regions of lavaged lungs was higher than that in low-aeration regions of nonlavaged lungs (P < 0.05). This occurred despite lower perfusion and ventilation to dependent regions in lavaged than nonlavaged lungs (P < 0.001). In contrast, (18)F-FDG uptake in normally aerated regions was low and similar between lungs. Surfactant depletion produces increased and heterogeneously distributed pulmonary (18)F-FDG uptake after 4 h of supine mechanical ventilation. Metabolic activity is highest in poorly aerated dependent regions, suggesting local increased inflammation.


Critical Care | 2013

Effects of ventilation strategy on distribution of lung inflammatory cell activity

Nicolas de Prost; Eduardo Leite Vieira Costa; Tyler J. Wellman; Guido Musch; Mauro R. Tucci; Tilo Winkler; R. Scott Harris; Jose G. Venegas; Brian P. Kavanagh; Marcos F. Vidal Melo

IntroductionLeukocyte infiltration is central to the development of acute lung injury, but it is not known how mechanical ventilation strategy alters the distribution or activation of inflammatory cells. We explored how protective (vs. injurious) ventilation alters the magnitude and distribution of lung leukocyte activation following systemic endotoxin administration.MethodsAnesthetized sheep received intravenous endotoxin (10 ng/kg/min) followed by 2 h of either injurious or protective mechanical ventilation (n = 6 per group). We used positron emission tomography to obtain images of regional perfusion and shunting with infused 13N[nitrogen]-saline and images of neutrophilic inflammation with 18F-fluorodeoxyglucose (18F-FDG). The Sokoloff model was used to quantify 18F-FDG uptake (Ki), as well as its components: the phosphorylation rate (k3, a surrogate of hexokinase activity) and the distribution volume of 18F-FDG (Fe) as a fraction of lung volume (Ki = Fe × k3). Regional gas fractions (fgas) were assessed by examining transmission scans.ResultsBefore endotoxin administration, protective (vs. injurious) ventilation was associated with a higher ratio of partial pressure of oxygen in arterial blood to fraction of inspired oxygen (PaO2/FiO2) (351 ± 117 vs. 255 ± 74 mmHg; P < 0.01) and higher whole-lung fgas (0.71 ± 0.12 vs. 0.48 ± 0.08; P = 0.004), as well as, in dependent regions, lower shunt fractions. Following 2 h of endotoxemia, PaO2/FiO2 ratios decreased in both groups, but more so with injurious ventilation, which also increased the shunt fraction in dependent lung. Protective ventilation resulted in less nonaerated lung (20-fold; P < 0.01) and more normally aerated lung (14-fold; P < 0.01). Ki was lower during protective (vs. injurious) ventilation, especially in dependent lung regions (0.0075 ± 0.0043/min vs. 0.0157 ± 0.0072/min; P < 0.01). 18F-FDG phosphorylation rate (k3) was twofold higher with injurious ventilation and accounted for most of the between-group difference in Ki. Dependent regions of the protective ventilation group exhibited lower k3 values per neutrophil than those in the injurious ventilation group (P = 0.01). In contrast, Fe was not affected by ventilation strategy (P = 0.52). Lung neutrophil counts were not different between groups, even when regional inflation was accounted for.ConclusionsDuring systemic endotoxemia, protective ventilation may reduce the magnitude and heterogeneity of pulmonary inflammatory cell metabolic activity in early lung injury and may improve gas exchange through its effects predominantly in dependent lung regions. Such effects are likely related to a reduction in the metabolic activity, but not in the number, of lung-infiltrating neutrophils.


The Journal of Nuclear Medicine | 2014

18F-FDG Kinetics Parameters Depend on the Mechanism of Injury in Early Experimental Acute Respiratory Distress Syndrome

Nicolas de Prost; Yan Feng; Tyler J. Wellman; Mauro R. Tucci; Eduardo Leite Vieira Costa; Guido Musch; Tilo Winkler; R. Scott Harris; Jose G. Venegas; Wei Chao; Marcos F. Vidal Melo

PET with 18F-FDG allows for noninvasive assessment of regional lung metabolism reflective of neutrophilic inflammation. This study aimed at determining during early acute lung injury whether local 18F-FDG phosphorylation rate and volume of distribution were sensitive to the initial regional inflammatory response and whether they depended on the mechanism of injury: endotoxemia and surfactant depletion. Methods: Twelve sheep underwent homogeneous unilateral surfactant depletion (alveolar lavage) and were mechanically ventilated for 4 h (positive end-expiratory pressure, 10 cm H2O; plateau pressure, 30 cm H2O) while receiving intravenous endotoxin (lipopolysaccharide-positive [LPS+] group; n = 6) or not (lipopolysaccharide-negative group; n = 6). 18F-FDG PET emission scans were then acquired. 18F-FDG phosphorylation rate and distribution volume were calculated with a 4-compartment model. Lung tissue expression of inflammatory cytokines was measured using real-time quantitative reverse transcription polymerase chain reaction. Results: 18F-FDG uptake increased in LPS+ (P = 0.012) and in surfactant-depleted sheep (P < 0.001). These increases were topographically heterogeneous, predominantly in dependent lung regions, and without interaction between alveolar lavage and LPS. The increase of 18F-FDG uptake in the LPS+ group was related both to increases in the 18F-FDG phosphorylation rate (P < 0.05) and to distribution volume (P < 0.01). 18F-FDG distribution volume increased with infiltrating neutrophils (P < 0.001) and phosphorylation rate with the regional expression of IL-1β (P = 0.026), IL-8 (P = 0.011), and IL-10 (P = 0.023). Conclusion: Noninvasive 18F-FDG PET-derived parameters represent histologic and gene expression markers of early lung injury. Pulmonary metabolism assessed with 18F-FDG PET depends on the mechanism of injury and appears to be additive for endotoxemia and surfactant depletion. 18F-FDG PET may be a valuable imaging biomarker of early lung injury.


PLOS ONE | 2012

Modeling 18F-FDG Kinetics during Acute Lung Injury: Experimental Data and Estimation Errors

A. Susanne Dittrich; Tilo Winkler; Tyler J. Wellman; Nicolas de Prost; Guido Musch; R. Scott Harris; Marcos F. Vidal Melo

Background There is increasing interest in Positron Emission Tomography (PET) of 2-deoxy-2-[18F]flouro-D-glucose (18F-FDG) to evaluate pulmonary inflammation during acute lung injury (ALI). We assessed the effect of extra-vascular lung water on estimates of 18F-FDG-kinetics parameters in experimental and simulated data using the Patlak and Sokoloff methods, and our recently proposed four-compartment model. Methodology/Principal Findings Eleven sheep underwent unilateral lung lavage and 4 h mechanical ventilation. Five sheep received intravenous endotoxin (10 ng/kg/min). Dynamic 18F-FDG PET was performed at the end of the 4 h period. 18F-FDG net uptake rate (Ki), phosphorylation rate (k3), and volume of distribution (Fe) were estimated in three isogravitational regions for each method. Simulations of normal and ALI 18F-FDG-kinetics were conducted to study the dependence of estimated parameters on the transport rate constants to (k5) and from (k6) the extra-vascular extra-cellular compartment. The four-compartment model described 85.7% of the studied 18F-FDG-kinetics better than the Sokoloff model. Relative to the four-compartment model the Sokoloff model exhibited a consistent positive bias in Ki (3.32 [1.30–5.65] 10−4/min, p<0.001) and showed inaccurate estimates of the parameters composing Ki (k3 and Fe), even when Ki was similar for those methods. In simulations, errors in estimates of Ki due to the extra-vascular extra-cellular compartment depended on both k5 and k5/k6, with errors for the Patlak and Sokoloff methods of 0.02 [−0.01–0.18] and 0.40 [0.18–0.60] 10−3/min for normal lungs and of −0.47 [−0.89–0.72] and 2.35 [0.85–3.68] 10−3/min in ALI. Conclusions/Significance 18F-FDG accumulation in lung extra-vascular fluid, which is commonly increased during lung injury, can result in substantial estimation errors using the traditional Patlak and Sokoloff methods. These errors depend on the extra-vascular extra-cellular compartment volume and its transport rates with other compartments. The four-compartment model provides more accurate quantification of 18F-FDG-kinetics than those methods in the presence of increased extra-vascular fluid.


Journal of Applied Physiology | 2016

Regional Tidal Lung Strain in Mechanically Ventilated Normal Lungs.

Luís Felipe Paula; Tyler J. Wellman; Tilo Winkler; Peter M. Spieth; Andreas Güldner; Jose G. Venegas; Marcelo Gama de Abreu; Alysson R. Carvalho; Marcos F. Vidal Melo

Parenchymal strain is a key determinant of lung injury produced by mechanical ventilation. However, imaging estimates of volumetric tidal strain (ε = regional tidal volume/reference volume) present substantial conceptual differences in reference volume computation and consideration of tidally recruited lung. We compared current and new methods to estimate tidal volumetric strains with computed tomography, and quantified the effect of tidal volume (VT) and positive end-expiratory pressure (PEEP) on strain estimates. Eight supine pigs were ventilated with VT = 6 and 12 ml/kg and PEEP = 0, 6, and 12 cmH2O. End-expiratory and end-inspiratory scans were analyzed in eight regions of interest along the ventral-dorsal axis. Regional reference volumes were computed at end-expiration (with/without correction of regional VT for intratidal recruitment) and at resting lung volume (PEEP = 0) corrected for intratidal and PEEP-derived recruitment. All strain estimates demonstrated vertical heterogeneity with the largest tidal strains in middependent regions (P < 0.01). Maximal strains for distinct estimates occurred at different lung regions and were differently affected by VT-PEEP conditions. Values consistent with lung injury and inflammation were reached regionally, even when global measurements were below critical levels. Strains increased with VT and were larger in middependent than in nondependent lung regions. PEEP reduced tidal-strain estimates referenced to end-expiratory lung volumes, although it did not affect strains referenced to resting lung volume. These estimates of tidal strains in normal lungs point to middependent lung regions as those at risk for ventilator-induced lung injury. The different conditions and topography at which maximal strain estimates occur allow for testing the importance of each estimate for lung injury.


Anesthesiology | 2013

Regional lung derecruitment and inflammation during 16 hours of mechanical ventilation in supine healthy sheep.

Mauro R. Tucci; Eduardo Leite Vieira Costa; Tyler J. Wellman; Guido Musch; Tilo Winkler; R. Scott Harris; Jose G. Venegas; Marcelo B. P. Amato; Marcos F. Vidal Melo

Background:Lung derecruitment is common during general anesthesia. Mechanical ventilation with physiological tidal volumes could magnify derecruitment, and produce lung dysfunction and inflammation. The authors used positron emission tomography to study the process of derecruitment in normal lungs ventilated for 16 h and the corresponding changes in regional lung perfusion and inflammation. Methods:Six anesthetized supine sheep were ventilated with VT = 8 ml/kg and positive end-expiratory pressure = 0. Transmission scans were performed at 2-h intervals to assess regional aeration. Emission scans were acquired at baseline and after 16 h for the following tracers: (1) 18F-fluorodeoxyglucose to evaluate lung inflammation and (2) 13NN to calculate regional perfusion and shunt fraction. Results:Gas fraction decreased from baseline to 16 h in dorsal (0.31 ± 0.13 to 0.14 ± 0.12, P < 0.01), but not in ventral regions (0.61 ± 0.03 to 0.63 ± 0.07, P = nonsignificant), with time constants of 1.5–44.6 h. Although the vertical distribution of relative perfusion did not change from baseline to 16 h, shunt increased in dorsal regions (0.34 ± 0.23 to 0.63 ± 0.35, P < 0.01). The average pulmonary net 18F-fluorodeoxyglucose uptake rate in six regions of interest along the ventral–dorsal direction increased from 3.4 ± 1.4 at baseline to 4.1 ± 1.5⋅10−3/min after 16 h (P < 0.01), and the corresponding average regions of interest 18F-fluorodeoxyglucose phosphorylation rate increased from 2.0 ± 0.2 to 2.5 ± 0.2⋅10−2/min (P < 0.01). Conclusions:When normal lungs are mechanically ventilated without positive end-expiratory pressure, loss of aeration occurs continuously for several hours and is preferentially localized to dorsal regions. Progressive lung derecruitment was associated with increased regional shunt, implying an insufficient hypoxic pulmonary vasoconstriction. The increased pulmonary net uptake and phosphorylation rates of 18F-fluorodeoxyglucose suggest an incipient inflammation in these initially normal lungs.


Anesthesiology | 2016

Lung Metabolic Activation as an Early Biomarker of Acute Respiratory Distress Syndrome and Local Gene Expression Heterogeneity.

Tyler J. Wellman; Nicolas de Prost; Mauro R. Tucci; Tilo Winkler; Rebecca M. Baron; Piotr T. Filipczak; Benjamin A. Raby; Jen-Hwa Chu; R. Scott Harris; Guido Musch; Luiz Fernando dos Reis Falcão; Vera Luiza Capelozzi; Jose G. Venegas; Marcos F. Vidal Melo

Background:Acute respiratory distress syndrome (ARDS) is an inflammatory condition comprising diffuse lung edema and alveolar damage. ARDS frequently results from regional injury mechanisms. However, it is unknown whether detectable inflammation precedes lung edema and opacification and whether topographically differential gene expression consistent with heterogeneous injury occurs in early ARDS. The authors aimed to determine the temporal relationship between pulmonary metabolic activation and density in a large animal model of early ARDS and to assess gene expression in differentially activated regions. Methods:The authors produced ARDS in sheep with intravenous lipopolysaccharide (10 ng ⋅ kg−1 ⋅ h−1) and mechanical ventilation for 20 h. Using positron emission tomography, the authors assessed regional cellular metabolic activation with 2-deoxy-2-[(18)F]fluoro-D-glucose, perfusion and ventilation with 13NN-saline, and aeration using transmission scans. Species-specific microarray technology was used to assess regional gene expression. Results:Metabolic activation preceded detectable increases in lung density (as required for clinical diagnosis) and correlated with subsequent histologic injury, suggesting its predictive value for severity of disease progression. Local time courses of metabolic activation varied, with highly perfused and less aerated dependent lung regions activated earlier than nondependent regions. These regions of distinct metabolic trajectories demonstrated differential gene expression for known and potential novel candidates for ARDS pathogenesis. Conclusions:Heterogeneous lung metabolic activation precedes increases in lung density in the development of ARDS due to endotoxemia and mechanical ventilation. Local differential gene expression occurs in these early stages and reveals molecular pathways relevant to ARDS biology and of potential use as treatment targets.

Collaboration


Dive into the Tyler J. Wellman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mauro R. Tucci

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge