Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tyler Lahusen is active.

Publication


Featured researches published by Tyler Lahusen.


Journal of Clinical Oncology | 2001

Phase I Trial of 72-Hour Continuous Infusion UCN-01 in Patients With Refractory Neoplasms

Edward A. Sausville; Susan G. Arbuck; Richard A. Messmann; Donna Headlee; Kenneth S. Bauer; Richard M. Lush; Anthony J. Murgo; William D. Figg; Tyler Lahusen; Susan Jaken; Xiu-xian Jing; Michel Roberge; Eiichi Fuse; Takashi Kuwabara; Adrian M. Senderowicz

PURPOSE To define the maximum tolerated dose (MTD) and dose-limiting toxicity (DLT) of the novel protein kinase inhibitor, UCN-01 (7-hydroxystaurosporine), administered as a 72-hour continuous intravenous infusion (CIV). PATIENTS AND METHODS Forty-seven patients with refractory neoplasms received UCN-01 during this phase I trial. Total, free plasma, and salivary concentrations were determined; the latter were used to address the influence of plasma protein binding on peripheral tissue distribution. The phosphorylation state of the protein kinase C (PKC) substrate alpha-adducin and the abrogation of DNA damage checkpoint also were assessed. RESULTS The recommended phase II dose of UCN-01 as a 72-hour CIV is 42.5 mg/m(2)/d for 3 days. Avid plasma protein binding of UCN-01, as measured during the trial, dictated a change in dose escalation and administration schedules. Therefore, nine patients received drug on the initial 2-week schedule, and 38 received drug on the recommended 4-week schedule. DLTs at 53 mg/m(2)/d for 3 days included hyperglycemia with resultant metabolic acidosis, pulmonary dysfunction, nausea, vomiting, and hypotension. Pharmacokinetic determinations at the recommended dose of 42.5 mg/m(2)/d for 3 days included mean total plasma concentration of 36.4 microM (terminal elimination half-life range, 447 to 1176 hours), steady-state volume of distribution of 9.3 to 14.2 L, and clearances of 0.005 to 0.033 L/h. The mean total salivary concentration was 111 nmol/L of UCN-01. One partial response was observed in a patient with melanoma, and one protracted period ( > 2.5 years) of disease stability was observed in a patient with alk-positive anaplastic large-cell lymphoma. Preliminary evidence suggests UCN-01 modulation of both PKC substrate phosphorylation and the DNA damage-related G(2) checkpoint. CONCLUSION UCN-01 can be administered safely as an initial 72-hour CIV with subsequent monthly doses administered as 36-hour infusions.


Cancer Cell | 2011

SIRT2 Maintains Genome Integrity and Suppresses Tumorigenesis through Regulating APC/C Activity

Hyun-Seok Kim; Athanassios Vassilopoulos; Rui Hong Wang; Tyler Lahusen; Zhen Xiao; Xiaoling Xu; Cuiling Li; Timothy D. Veenstra; Bing Li; Hongtao Yu; Junfang Ji; Xin Wei Wang; Seong Hoon Park; Yong I. Cha; David Gius; Chu-Xia Deng

Members of sirtuin family regulate multiple critical biological processes, yet their role in carcinogenesis remains controversial. To investigate the physiological functions of SIRT2 in development and tumorigenesis, we disrupted Sirt2 in mice. We demonstrated that SIRT2 regulates the anaphase-promoting complex/cyclosome activity through deacetylation of its coactivators, APC(CDH1) and CDC20. SIRT2 deficiency caused increased levels of mitotic regulators, including Aurora-A and -B that direct centrosome amplification, aneuploidy, and mitotic cell death. Sirt2-deficient mice develop gender-specific tumorigenesis, with females primarily developing mammary tumors, and males developing more hepatocellular carcinoma (HCC). Human breast cancers and HCC samples exhibited reduced SIRT2 levels compared with normal tissues. These data demonstrate that SIRT2 is a tumor suppressor through its role in regulating mitosis and genome integrity.


Cell Metabolism | 2010

Hepatic-Specific Disruption of SIRT6 in Mice Results in Fatty Liver Formation Due to Enhanced Glycolysis and Triglyceride Synthesis

Hyun-Seok Kim; Cuiying Xiao; Rui Hong Wang; Tyler Lahusen; Xiaoling Xu; Athanassios Vassilopoulos; Guelaguetza Vazquez-Ortiz; Won Il Jeong; Ogyi Park; Sung Hwan Ki; Bin Gao; Chu-Xia Deng

Under various conditions, mammals have the ability to maintain serum glucose concentration within a narrow range. SIRT1 plays an important role in regulating gluconeogenesis and fat metabolism; however, the underlying mechanisms remain elusive. Here, we show that SIRT1 forms a complex with FOXO3a and NRF1 on the SIRT6 promoter and positively regulates expression of SIRT6, which, in turn, negatively regulates glycolysis, triglyceride synthesis, and fat metabolism by deacetylating histone H3 lysine 9 in the promoter of many genes involved in these processes. Liver-specific deletion of SIRT6 in mice causes profound alterations in gene expression, leading to increased glycolysis, triglyceride synthesis, reduced beta oxidation, and fatty liver formation. Human fatty liver samples exhibited significantly lower levels of SIRT6 than did normal controls. Thus, SIRT6 plays a critical role in fat metabolism and may serve as a therapeutic target for treating fatty liver disease, the most common cause of liver dysfunction in humans.


Cancer Cell | 2013

SIRT4 has tumor suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism

Seung Min Jeong; Cuiying Xiao; Lydia W.S. Finley; Tyler Lahusen; Amanda Souza; Kerry A. Pierce; Ying-Hua Li; Xiaoxu Wang; Gaëlle Laurent; Natalie J. German; Xiaoling Xu; Cuiling Li; Rui-Hong Wang; Jaewon Lee; Alfredo Csibi; Richard A. Cerione; John Blenis; Clary B. Clish; Alec C. Kimmelman; Chu-Xia Deng; Marcia C. Haigis

DNA damage elicits a cellular signaling response that initiates cell cycle arrest and DNA repair. Here, we find that DNA damage triggers a critical block in glutamine metabolism, which is required for proper DNA damage responses. This block requires the mitochondrial SIRT4, which is induced by numerous genotoxic agents and represses the metabolism of glutamine into tricarboxylic acid cycle. SIRT4 loss leads to both increased glutamine-dependent proliferation and stress-induced genomic instability, resulting in tumorigenic phenotypes. Moreover, SIRT4 knockout mice spontaneously develop lung tumors. Our data uncover SIRT4 as an important component of the DNA damage response pathway that orchestrates a metabolic block in glutamine metabolism, cell cycle arrest, and tumor suppression.


Journal of Biological Chemistry | 2010

SIRT6 Deficiency Results in Severe Hypoglycemia by Enhancing Both Basal and Insulin-stimulated Glucose Uptake in Mice

Cuiying Xiao; Hyun-Seok Kim; Tyler Lahusen; Rui Hong Wang; Xiaoling Xu; Oksana Gavrilova; William Jou; David Gius; Chu-Xia Deng

Glucose homeostasis in mammals is mainly regulated by insulin signaling. It was previously shown that SIRT6 mutant mice die before 4 weeks of age, displaying profound abnormalities, including low insulin, hypoglycemia, and premature aging. To investigate mechanisms underlying the pleiotropic phenotypes associated with SIRT6 deficiency, we generated mice carrying targeted disruption of SIRT6. We found that 60% of SIRT6−/− animals had very low levels of blood glucose and died shortly after weaning. The remaining animals, which have relatively higher concentrations of glucose, survived the early post-weaning lethality, but most died within one year of age. Significantly, feeding the mice with glucose-containing water increased blood glucose and rescued 83% of mutant mice, suggesting that the hypoglycemia is a major cause for the lethality. We showed that SIRT6 deficiency results in more abundant membrane association of glucose transporters 1 and 4, which enhances glucose uptake. We further demonstrated that SIRT6 negatively regulates AKT phosphorylation at Ser-473 and Thr-308 through inhibition of multiple upstream molecules, including insulin receptor, IRS1, and IRS2. The absence of SIRT6, consequently, enhances insulin signaling and activation of AKT, leading to hypoglycemia. These data uncover an essential role of SIRT6 in modulating glucose metabolism through mediating insulin sensitivity.


Pharmacology & Therapeutics | 1999

Cyclin-dependent kinases: initial approaches to exploit a novel therapeutic target.

Edward A. Sausville; Daniel W. Zaharevitz; Robert Gussio; Laurent Meijer; Maryse Louarn-Leost; Conrad Kunick; Robert Schultz; Tyler Lahusen; Donna Headlee; Sherman F. Stinson; Susan G. Arbuck; Adrian M. Senderowicz

Cyclin-dependent kinases (CDKs) have been recognized as key regulators of cell cycle progression. Alteration and deregulation of CDK activity are pathogenic hallmarks of neoplasia. Therefore, inhibitors or modulators would be of interest to explore as novel therapeutic agents in cancer, as well as other hyperproliferative disorders. Flavopiridol is a semisynthetic flavonoid that emerged from an empirical screening program as a potent antiproliferative agent that mechanistic studies demonstrated to directly inhibit CDKs 1, 2, and 4 as a competitive ATP site antagonist. Initial clinical trials have shown that concentrations that inhibit cell proliferation and CDK activity in vitro can be safely achieved in humans, and additional clinical trials will establish its clinical potential. To address the need for additional chemotypes that may serve as lead structures for drugs that would not have the toxicities associated with flavopiridol, compounds with a similar pattern of cell growth inhibitory activity in the National Cancer Institutes in vitro anticancer drug screen have been recognized by the computer-assisted pattern recognition algorithm COMPARE and then screened for anti-CDK activity in a biochemical screen. The benzodiazepine derivative NSC 664704 (7,12-dihydro-indolo[3,2-d][1]benzazepin-6(5H)-one) was revealed by that approach as a moderately potent (IC50 0.4 microM) inhibitor of CDK2, which in initial experiments shows evidence of causing cell cycle redistribution in living cells. NSC 664704 is, therefore, a candidate for further structural optimization, guided in part by understanding of the ATP-binding site in CDK2. This approach represents one way of combining empirical screening information with structure-based design to derive novel candidate therapeutic agents directed against an important cellular target.


Journal of Biological Chemistry | 2012

Progression of Chronic Liver Inflammation and Fibrosis Driven by Activation of c-JUN Signaling in Sirt6 Mutant Mice

Cuiying Xiao; Rui Hong Wang; Tyler Lahusen; Ogyi Park; Adeline Bertola; Takashi Maruyama; Della Reynolds; Qiang Chen; Xiaoling Xu; Howard A. Young; WanJun Chen; Bin Gao; Chu-Xia Deng

Background: Sirt6 plays important roles in metabolism and lifespan; however, its role in inflammation is unknown. Results: Sirt6 deficiency in the immune cells of mice results in liver inflammation and fibrosis through activating the c-JUN signaling. Conclusion: Sirt6 has anti-inflammatory function in mice. Significance: Small chemical compounds that activate Sirt6 might be useful in therapeutic treatment of chronic liver inflammation. The human body has a remarkable ability to regulate inflammation, a biophysical response triggered by virus infection and tissue damage. Sirt6 is critical for metabolism and lifespan; however, its role in inflammation is unknown. Here we show that Sirt6-null (Sirt6−/−) mice developed chronic liver inflammation starting at ∼2 months of age, and all animals were affected by 7–8 months of age. Deletion of Sirt6 in T cells or myeloid-derived cells was sufficient to induce liver inflammation and fibrosis, albeit to a lesser degree than that in the global Sirt6−/− mice, suggesting that Sirt6 deficiency in the immune cells is the cause. Consistently, macrophages derived from the bone marrow of Sirt6−/− mice showed increased MCP-1, IL-6, and TNFα expression levels and were hypersensitive to LPS stimulation. Mechanistically, SIRT6 interacts with c-JUN and deacetylates histone H3 lysine 9 (H3K9) at the promoter of proinflammatory genes whose expression involves the c-JUN signaling pathway. Sirt6-deficient macrophages displayed hyperacetylation of H3K9 and increased occupancy of c-JUN in the promoter of these genes, leading to their elevated expression. These data suggest that Sirt6 plays an anti-inflammatory role in mice by inhibiting c-JUN-dependent expression of proinflammatory genes.


Cell Research | 2010

BRCA1 affects global DNA methylation through regulation of DNMT1

Vivek Shukla; Xavier Coumoul; Tyler Lahusen; Rui Hong Wang; Xiaoling Xu; Athanassios Vassilopoulos; Cuiying Xiao; Mi Hye Lee; Yan Gao Man; Mutsuko Ouchi; Toru Ouchi; Chu-Xia Deng

Global DNA hypomethylation at CpG islands coupled with local hypermethylation is a hallmark for breast cancer, yet the mechanism underlying this change remains elusive. In this study, we showed that DNMT1, which encodes a methylation maintenance enzyme, is a transcriptional target of BRCA1. BRCA1 binds to the promoter of the DNMT1 gene through a potential OCT1 site and the binding is required for maintaining a transcriptional active configuration of the promoter in both mouse and human cells. We further demonstrated that impaired function of BRCA1 leads to global DNA hypomethylation, loss of genomic imprinting, and an open chromatin configuration in several types of tissues examined in a BRCA1 mutant mouse model at premaligant stages. BRCA1 deficiency is also associated with significantly increased expression levels of several protooncogenes, including c-Fos, Ha-Ras, and c-Myc, with a higher expression in tumors, while premalignant mammary epithelial cells displayed an intermediate state between tumors and controls. In human clinical samples, reduced expression of BRCA1 correlates with decreased levels of DNMT1, and reduced methylation of CpG islands. Thus, BRCA1 prevents global DNA hypomethylation through positively regulating DNMT1 expression, and this provides one of mechanisms for BRCA1-associated breast cancer formation.


Cancer Research | 2006

E6AP Mediates Regulated Proteasomal Degradation of the Nuclear Receptor Coactivator Amplified in Breast Cancer 1 in Immortalized Cells

Aparna Mani; Annabell S. Oh; Emma T. Bowden; Tyler Lahusen; Kevin L. Lorick; Allan M. Weissman; Richard Schlegel; Anton Wellstein; Anna T. Riegel

The steroid receptor coactivator oncogene, amplified in breast cancer 1 (AIB1; also known as ACTR/RAC-3/TRAM-1/SRC-3/p/CIP), is amplified and overexpressed in a variety of epithelial tumors. AIB1 has been reported to have roles in both steroid-dependent and steroid-independent transcription during tumor progression. In this report, we describe that the cellular levels of AIB1 are controlled through regulated proteasomal degradation. We found that serum withdrawal or growth in high cell density caused rapid degradation of AIB1 protein, but not mRNA, in immortalized cell lines. Proteasome inhibitors prevented this process, and high molecular weight ubiquitylated species of AIB1 were detected. Nuclear export was required for proteasomal degradation of AIB1 and involved the ubiquitin ligase, E6AP. AIB1/E6AP complexes were detected in cellular extracts, and reduction of cellular E6AP levels with E6AP short interfering RNA prevented proteasomal degradation of AIB1. Conversely, overexpression of E6AP promoted AIB1 degradation. The COOH terminus of AIB1 interacted with E6AP in vitro and deletion of this region in AIB1 rendered it resistant to degradation in cells. From our results, we propose a model whereby signals promoted by changes in the cellular milieu initiate E6AP-mediated proteasomal degradation of AIB1 and thus contribute to the control of steady-state levels of this protein.


Cancer Research | 2007

Epidermal Growth Factor Receptor Tyrosine Phosphorylation and Signaling Controlled by a Nuclear Receptor Coactivator, Amplified in Breast Cancer 1

Tyler Lahusen; Mark P. Fereshteh; Annabell S. Oh; Anton Wellstein; Anna T. Riegel

The steroid receptor coactivator amplified in breast cancer 1 (AIB1) as well as epidermal growth factor receptor (EGFR) family members are frequently overexpressed in epithelial tumors, and their expression is associated with poor prognosis. However, a direct role of AIB1 in EGF signaling has not been determined. To address this, we reduced endogenous AIB1 levels using RNA interference in lung, breast, and pancreatic cancer cell lines. We found that a knockdown of AIB1 levels resulted in a loss of the growth response of these cell lines to EGF. Further analysis revealed that the depletion of AIB1 reduced tyrosine phosphorylation of EGFR at multiple residues both at autophosphorylation and Src kinase phosphorylation sites. AIB1 knockdown did not affect tyrosine phosphorylation of the receptor tyrosine kinases, platelet-derived growth factor receptor and HER3, or overall tyrosine phosphorylation of cellular proteins. However, EGF-dependent phosphorylation of HER2 was decreased. EGFR levels and membrane trafficking were not changed by AIB1 depletion, but there was less recruitment of Src homology 2 domain-containing proteins to the EGFR. This led to a substantial reduction in EGF-induced phosphorylation of signal transducers and activators of transcription 5 and c-Jun NH(2)-terminal kinase but no significant change in the activation of AKT. Vanadate treatment of cells revealed that the reduction in EGFR tyrosine phosphorylation is dependent in part on changes in cellular phosphatase activity. We propose that a portion of the oncogenic effect of AIB1 could be through control of EGFR and HER2 activity and subsequent modulation of cellular signaling pathways.

Collaboration


Dive into the Tyler Lahusen's collaboration.

Top Co-Authors

Avatar

Xiaoling Xu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Adrian M. Senderowicz

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cuiying Xiao

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Rui-Hong Wang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Rui Hong Wang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge