Typhaine Poezevara
ANSES
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Typhaine Poezevara.
International Journal of Food Microbiology | 2017
Manuel Jimmy Saint-Cyr; Nabila Haddad; Bernard Taminiau; Typhaine Poezevara; Ségolène Quesne; Michel Amelot; Georges Daube; Marianne Chemaly; Xavier Dousset; Muriel Guyard-Nicodème
Campylobacteriosis is the most frequently reported zoonotic disease in humans in the EU since 2005. As chicken meat is the main source of contamination, reducing the level of Campylobacter in broiler chicken will lower the risk to consumers. The aim of this project was to evaluate the ability of Lactobacillus salivarius SMXD51 to control Campylobacter jejuni in broilers and to investigate the mechanisms that could be involved. Thirty broilers artificially contaminated with C. jejuni were treated by oral gavage with MRS broth or a bacterial suspension (107CFU) of Lb. salivarius SMXD51 (SMXD51) in MRS broth. At 14 and 35days of age, Campylobacter and Lb. salivarius loads were assessed in cecal contents. The impact of the treatment on the avian gut microbiota at day 35 was also evaluated. At day 14, the comparison between the control and treated groups showed a significant reduction (P<0.05) of 0.82 log. After 35days, a significant reduction (P<0.001) of 2.81 log in Campylobacter loads was observed and 73% of chickens treated with the culture exhibited Campylobacter loads below 7log10CFU/g. Taxonomic analysis revealed that SMXD51 treatment induced significant changes (P<0.05) in a limited number of bacterial genera of the avian gut microbiota and partially limited the impact of Campylobacter on Anaerotruncus sp. decrease and Subdoligranulum sp. increase. Thus, SMXD51 exhibits an anti-Campylobacter activity in vivo and can partially prevent the impact of Campylobacter on the avian gut microbiota.
Avian Pathology | 2017
R. Souillard; C. Le Maréchal; Valentine Ballan; S. Rouxel; D. Léon; L. Balaine; Typhaine Poezevara; Emmanuelle Houard; B. Robineau; C. Robinault; Marianne Chemaly; S. Le Bouquin
ABSTRACT In 2014, a botulism outbreak in a flock of laying hens was investigated in France. In the flock of 5020 hens, clinical signs of botulism occurred at 46 weeks of age. A type C/D botulism outbreak was confirmed using the mouse lethality assay for detection of botulinum toxin in serum and a real-time PCR test to detect Clostridium botulinum in intestinal contents. The disease lasted one week with a mortality rate of 2.6% without recurrence. Botulism in laying hens has rarely been reported. Five monthly visits were made to the farm between December 2014 and May 2015 for a longitudinal study of the persistence of C. botulinum in the poultry house after the outbreak, and to assess egg contamination by C. botulinum. Several samples were collected on each visit: in the house (from the ventilation circuit, the egg circuit, water and feed, droppings) and the surrounding area. Thirty clean and 30 dirty eggs were also swabbed at each visit. In addition, 12 dirty and 12 clean eggs were collected to analyse eggshell and egg content. The samples were analysed using real-time PCR to detect type C/D C. botulinum. The bacterium was still detected in the house more than 5 months after the outbreak, mostly on the walls and in the egg circuit. Regarding egg contamination, the bacteria were detected only on the shell but not in the content of the eggs. Control measures should therefore be implemented throughout the egg production period to avoid dissemination of the bacteria, particularly during egg collection.
PLOS ONE | 2017
Caroline Le Maréchal; S. Rouxel; Valentine Ballan; Emmanuelle Houard; Typhaine Poezevara; Marie-Hélène Bayon-Auboyer; Rozenn Souillard; Hervé Morvan; Marie-Agnès Baudouard; Cédric Woudstra; Christelle Mazuet; Sophie Le Bouquin; Patrick Fach; Michel Popoff; Marianne Chemaly
Liver is a reliable matrix for laboratory confirmation of avian botulism using real-time PCR. Here, we developed, optimized, and validated the analytical steps preceding PCR to maximize the detection of Clostridium botulinum group III in avian liver. These pre-PCR steps included enrichment incubation of the whole liver (maximum 25 g) at 37°C for at least 24 h in an anaerobic chamber and DNA extraction using an enzymatic digestion step followed by a DNA purification step. Conditions of sample storage before analysis appear to have a strong effect on the detection of group III C. botulinum strains and our results recommend storage at temperatures below -18°C. Short-term storage at 5°C is possible for up to 24 h, but a decrease in sensitivity was observed at 48 h of storage at this temperature. Analysis of whole livers (maximum 25 g) is required and pooling samples before enrichment culturing must be avoided. Pooling is however possible before or after DNA extraction under certain conditions. Whole livers should be 10-fold diluted in enrichment medium and homogenized using a Pulsifier® blender (Microgen, Surrey, UK) instead of a conventional paddle blender. Spiked liver samples showed a limit of detection of 5 spores/g liver for types C and D and 250 spores/g for type E. Using the method developed here, the analysis of 268 samples from 73 suspected outbreaks showed 100% specificity and 95.35% sensitivity compared with other PCR-based methods considered as reference. The mosaic type C/D was the most common neurotoxin type found in examined samples, which included both wild and domestic birds.
PLOS ONE | 2017
Marine Meunier; Muriel Guyard-Nicodème; Estelle Vigouroux; Typhaine Poezevara; Véronique Béven; Ségolène Quesne; Lionel Bigault; Michel Amelot; Daniel Dory; Marianne Chemaly
Campylobacter is the leading cause of human bacterial gastroenteritis in the European Union. Birds represent the main reservoir of the bacteria, and human campylobacteriosis mainly occurs after consuming and/or handling poultry meat. Reducing avian intestinal Campylobacter loads should impact the incidence of human diseases. At the primary production level, several measures have been identified to reach this goal, including vaccination of poultry. Despite many studies, however, no efficient vaccine is currently available. We have recently identified new vaccine candidates using the reverse vaccinology strategy. This study assessed the in vivo immune and protective potential of six newly-identified vaccine antigens. Among the candidates tested on Ross broiler chickens, four (YP_001000437.1, YP_001000562.1, YP_999817.1, and YP_999838.1) significantly reduced cecal Campylobacter loads by between 2 and 4.2 log10 CFU/g, with the concomitant development of a specific humoral immune response. In a second trial, cecal load reductions results were not statistically confirmed despite the induction of a strong immune response. These vaccine candidates need to be further investigated since they present promising features.
Veterinary Microbiology | 2015
R. Souillard; C. Le Maréchal; F. Hollebecque; S. Rouxel; A. Barbé; Emmanuelle Houard; D. Léon; Typhaine Poezevara; Patrick Fach; Cédric Woudstra; F. Mahé; Marianne Chemaly; S. Le Bouquin
Ten cattle farms located in an area with a recent history of poultry botulism outbreaks were investigated to evaluate the occurrence of toxigenic C. botulinum in healthy cattle. Environmental samples in the 10 cattle farms and bovine fecal contents in farms with a confirmed environmental contamination were collected. Detection of C. botulinum toxin genes C, D, C/D, D/C and E was performed using real-time PCR. 4.9% (7/143) of the environmental samples collected in the 10 investigated cattle farms were positive for C. botulinum type C/D. Theses samples (boot-swabs in stalls and on pasture and water of a stream) were collected in 3 different farms. One cow dung sample and 3 out of 64 fecal contents samples collected in a single farm were also positive for C. botulinum type C/D. This study demonstrates that cattle are probably indirectly contaminated via poultry botulism in the area and that they can be intermittent carrier of C. botulinum type C/D after poultry botulism outbreaks in mixed farms.
Frontiers in Microbiology | 2018
Amandine Thépault; Typhaine Poezevara; Ségolène Quesne; Valérie Rose; Marianne Chemaly; Katell Rivoal
Campylobacter is the leading cause of bacterial gastroenteritis in industrialized countries, with poultry reservoir as the main source of infection. Nevertheless, a recent study on source attribution showed that cattle could be a source of human contamination in France (Thépault et al., 2017). However, few data are available on thermophilic Campylobacter epidemiology in cattle in France. The aim of this study is to collect new data of thermophilic Campylobacter prevalence in these animals and to subtype C. jejuni isolates to assess the potential implication of cattle in campylobacteriosis. A 6-month survey was carried out in one of the largest European slaughterhouse of cattle. Based on a statistical representative sampling plan, 959 intestinal content samples (483 adult cattle and 476 calves) were collected. An adapted version of the ISO 10272 standard and Maldi-Tof were used for detection and speciation of thermophilic Campylobacter isolates. Within more than 2000 thermophilic Campylobacter isolates collected, a selection of 649 C. jejuni isolates was typed with Comparative Genomic Fingerprinting (CGF40) and a subset of 77 isolates was typed using Multilocus Sequence Typing (MLST). Simultaneously, clinical isolates occurred in France were genotyped. Prevalence of thermophilic Campylobacter in the global cattle population was 69.1% (CI95% = 66.1, 72.1) at slaughterhouse level. In adult cattle, the prevalence was 39.3%, while 99.4% of calves were contaminated, and C. jejuni was the most prevalent species with prevalence of 37.3 and 98.5%, respectively and a higher genetic diversity in adult cattle. The prevalence of C. coli was lower with 3% in adult cattle and 12.5% in calves. MLST and CGF40 genotyping did not showed a high number of clusters within cattle isolates but the predominance of few clusters accounted for a large part of the population (CC-21, CC-61, CC-48, and CC-257). By comparison with clinical genotypes, genetic diversity was significantly lower in cattle. Moreover, significant overlap was observed between genotypes from both origins, with 3 of the 4 main cattle clusters present in human isolates. This study provides new insights on the epidemiology of thermophilic Campylobacter and C. jejuni in cattle production in France and their potential implication in human infection.
Frontiers in Microbiology | 2017
Muriel Guyard-Nicodème; A. Huneau-Salaün; Fabrizio A. Tatone; Fabien Skiba; Maxime Quentin; Ségolène Quesne; Typhaine Poezevara; Marianne Chemaly
The poultry reservoir, especially broiler meat, is generally recognized as one of the most-important sources for human Campylobacteriosis. The measures to control Campylobacter targeted essentially the primary production level. The aim of this work was to evaluate the effectiveness of different treatments against natural Campylobacter colonization in a French experimental farm of free-range broilers during the whole rearing period. Five commercial products and a combination of two of them were tested and all the products were added to feed or to water at the dose recommended by the suppliers. Campylobacter loads in caeca and on carcasses of broilers at the slaughter were determined by culture methods. Natural contamination of the flock occurred at the end of the indoor rearing period between day 35 and day 42. At day 42, the multispecies probiotic added to the feed reduced the contamination of 0.55 log10 CFU/g (p = 0.02) but was not significant (p > 0.05) at the end of rearing at day 78. However, another treatment, a combination of a cation exchange clay-based product in feed and an organic acid mixture (formic acid, sodium formate, lactic acid, propionic acid) in water, led to a slight but significant reduction of 0.82 ± 0.25 log10 CFU/g (p = 0.02) compared to the control group at day 78. Testing this combination in field conditions in several flocks is needed to determine if it is biologically relevant and if it could be a valuable measure to reduce Campylobacter in broiler flocks.
Zoonoses and Public Health | 2018
A. Huneau-Salaün; Muriel Guyard-Nicodème; G. Benzoni; X. Gautier; Ségolène Quesne; Typhaine Poezevara; Marianne Chemaly
A randomized controlled trial (RCT) was carried to evaluate the effect of a feed additive on Campylobacter contamination of broilers reared in commercial conditions. Twenty‐four broiler flocks naturally contaminated with Campylobacter were enrolled in the RCT: 12 were assigned to a control group (C) fed with a conventional finishing feed from 4 weeks of age to slaughter (around 35 days), and the other group of 12 flocks (S) was fed with a finishing feed supplemented with 250 ppm of a patented feed additive (an ion‐exchanged clay compound) previously proven to reduce Campylobacter contamination in broiler caeca under experimental conditions. Enumeration of Campylobacter colonies in caeca (8 per flock) was carried out following ISO standards before feed distribution and at slaughter. Before treatment, the caecal Campylobacter load tended to be lower in C flocks (7.1 ± 1.9 log CFU/g, CI95% [6.6–7.5]) than in S flocks (7.7 ± 1.0 log UFC/g, CI95% [7.5–7.9]) (p = .05). At slaughter, the bacterial load was similar in the S (7.7 ± 1.0 log CFU/g, CI95% [7.5–7.9]) and C groups (7.5 ± 1.2 log CFU/g, CI95% [7.2–7.8]) (p = .73). Therefore, the feed additive had no significant effect on the caecal Campylobacter load at slaughter under the tested conditions. The logistical constraints inherent in field trials and the natural variability of Campylobacter contamination in naturally infected broiler flocks make it difficult to reproduce experimental results in in situ farm conditions. RCT testing of an intervention strategy in commercial situation is therefore a key step in evaluating pre‐harvest interventions against food‐borne pathogens.
Vaccine | 2018
Marine Meunier; Muriel Guyard-Nicodème; Estelle Vigouroux; Typhaine Poezevara; Véronique Béven; Ségolène Quesne; Michel Amelot; Alberto Parra; Marianne Chemaly; Daniel Dory
Vaccination of broilers is one of the potential ways to decrease Campylobacter intestinal loads and therefore may reduce human disease incidence. Despite many studies, no efficient vaccine is available yet. Using the reverse vaccinology strategy, we recently identified new vaccine candidates whose immune and protective capacities need to be evaluated in vivo. Therefore, the goal of the present study was to develop and evaluate an avian subunit vaccine protocol for poultry against Campylobacter jejuni. For this, flagellin was used as vaccine antigen candidate. A DNA prime/protein boost regimen was effective in inducing a massive protective immune response against C. jejuni in specific pathogen free Leghorn chickens. Contrastingly, the same vaccine regimen stimulated the production of antibodies against Campylobacter in conventional Ross broiler chickens harbouring maternally derived antibodies against Campylobacter, but not the control of C. jejuni colonization. These results highlight the strength of the vaccine protocol in inducing protective immunity and the significance of the avian strain and/or immune status in the induction of this response. Nevertheless, as such the vaccine protocol is not efficient in broilers to induce protection and has to be adapted; this has been done in one of our recent published work.
Scientific Reports | 2018
Amandine Thépault; Valérie Rose; Ségolène Quesne; Typhaine Poezevara; Véronique Béven; Edouard Hirchaud; Fabrice Touzain; Pierrick Lucas; Guillaume Méric; Leonardos Mageiros; Samuel K. Sheppard; Marianne Chemaly; Katell Rivoal
Pathogen source attribution studies are a useful tool for identifying reservoirs of human infection. Based on Multilocus Sequence Typing (MLST) data, such studies have identified chicken as a major source of C. jejuni human infection. The use of whole genome sequence-based typing methods offers potential to improve the precision of attribution beyond that which is possible from 7 MLST loci. Using published data and 156 novel C. jejuni genomes sequenced in this study, we performed probabilistic host source attribution of clinical C. jejuni isolates from France using three types of genotype data: comparative genomic fingerprints; MLST genes; 15 host segregating genes previously identified by whole genome sequencing. Consistent with previous studies, chicken was an important source of campylobacteriosis in France (31–63% of clinical isolates assigned). There was also evidence that ruminants are a source (22–55% of clinical isolates assigned), suggesting that further investigation of potential transmission routes from ruminants to human would be useful. Additionally, we found evidence of environmental and pet sources. However, the relative importance as sources varied according to the year of isolation and the genotyping technique used. Annual variations in attribution emphasize the dynamic nature of zoonotic transmission and the need to perform source attribution regularly.