Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tyrrell Conway is active.

Publication


Featured researches published by Tyrrell Conway.


Molecular Microbiology | 2008

The global, ppGpp-mediated stringent response to amino acid starvation in Escherichia coli.

Matthew F. Traxler; Sean M. Summers; Huyen-Tran Nguyen; Vineetha M. Zacharia; G. Aaron Hightower; Joel T. Smith; Tyrrell Conway

The stringent response to amino acid starvation, whereby stable RNA synthesis is curtailed in favour of transcription of amino acid biosynthetic genes, is controlled by the alarmone ppGpp. To elucidate the extent of gene expression effected by ppGpp, we designed an experimental system based on starvation for isoleucine, which could be applied to both wild‐type Escherichia coli and the multiauxotrophic relA spoT mutant (ppGpp0). We used microarrays to profile the response to amino acid starvation in both strains. The wild‐type response included induction of the general stress response, downregulation of genes involved in production of macromolecular structures and comprehensive restructuring of metabolic gene expression, but not induction of amino acid biosynthesis genes en masse. This restructuring of metabolism was confirmed using kinetic Biolog assays. These responses were profoundly altered in the ppGpp0 strain. Furthermore, upon isoleucine starvation, the ppGpp0 strain exhibited a larger cell size and continued growth, ultimately producing 50% more biomass than the wild‐type, despite producing a similar amount of protein. This mutant phenotype correlated with aberrant gene expression in diverse processes, including DNA replication, cell division, and fatty acid and membrane biosynthesis. We present a model that expands and functionally integrates the ppGpp‐mediated stringent response to include control of virtually all macromolecular synthesis and intermediary metabolism.


Molecular Microbiology | 2002

Gene expression profiling of Escherichia coli growth transitions: an expanded stringent response model

Dong-Eun Chang; Darren J. Smalley; Tyrrell Conway

When conditions cause bacterial growth to stop, extensive reprogramming of physiology and gene expression allows for the cells survival. We used whole‐genome DNA arrays to determine the system response in Escherichia coli cells experiencing transient growth arrest caused by glucose–lactose diauxie and H2O2 treatment, and also entry into stationary phase. The results show that growth‐arrested cells induce stringent control of several gene systems. The vast majority of genes encoding the transcription and translation apparatus immediately downregulate, followed by a global return to steady state when growth resumes. Approximately one‐half of the amino acid biosynthesis genes downregulate during growth arrest, with the notable exception of the his operon, which transiently upregulates in the diauxie experiment. Nucleotide biosynthesis downregulates, a result that is again consistent with the stringent response. Likewise, aerobic metabolism downregulates during growth arrest, and the results led us to suggest a model for stringent control of the ArcA regulon. The stationary phase stress response fully induces during growth arrest, whether transient or permanent, in a manner consistent with known mechanisms related to stringent control. Cells similarly induce the addiction module anti‐toxin and toxin genes during growth arrest; the latter are known to inhibit translation and DNA replication. The results indicate that in all aspects of the response cells do not distinguish between transient and potentially permanent growth arrest (stationary phase). We introduce an expanded model for the stringent response that integrates induction of stationary phase survival genes and inhibition of transcription, translation and DNA replication. Central to the model is the reprogramming of transcription by guanosine tetraphosphate (ppGpp), which provides for the cells rapid response to growth arrest and, by virtue of its brief half‐life, the ability to quickly resume growth as changing conditions allow.


Infection and Immunity | 2008

Comparison of carbon nutrition for pathogenic and commensal Escherichia coli strains in the mouse intestine.

Andrew J. Fabich; Shari A. Jones; Fatema Z. Chowdhury; Amanda Cernosek; April B. Anderson; Darren J. Smalley; J. Wesley McHargue; G. Aaron Hightower; Joel T. Smith; Steven M. Autieri; Mary P. Leatham; Jeremy J. Lins; Regina L. Allen; David C. Laux; Paul S. Cohen; Tyrrell Conway

ABSTRACT The carbon sources that support the growth of pathogenic Escherichia coli O157:H7 in the mammalian intestine have not previously been investigated. In vivo, the pathogenic E. coli EDL933 grows primarily as single cells dispersed within the mucus layer that overlies the mouse cecal epithelium. We therefore compared the pathogenic strain and the commensal E. coli strain MG1655 modes of metabolism in vitro, using a mixture of the sugars known to be present in cecal mucus, and found that the two strains used the 13 sugars in a similar order and cometabolized as many as 9 sugars at a time. We conducted systematic mutation analyses of E. coli EDL933 and E. coli MG1655 by using lesions in the pathways used for catabolism of 13 mucus-derived sugars and five other compounds for which the corresponding bacterial gene system was induced in the transcriptome of cells grown on cecal mucus. Each of 18 catabolic mutants in both bacterial genetic backgrounds was fed to streptomycin-treated mice, together with the respective wild-type parent strain, and their colonization was monitored by fecal plate counts. None of the mutations corresponding to the five compounds not found in mucosal polysaccharides resulted in colonization defects. Based on the mutations that caused colonization defects, we determined that both E. coli EDL933 and E. coli MG1655 used arabinose, fucose, and N-acetylglucosamine in the intestine. In addition, E. coli EDL933 used galactose, hexuronates, mannose, and ribose, whereas E. coli MG1655 used gluconate and N-acetylneuraminic acid. The colonization defects of six catabolic lesions were found to be additive with E. coli EDL933 but not with E. coli MG1655. The data indicate that pathogenic E. coli EDL933 uses sugars that are not used by commensal E. coli MG1655 to colonize the mouse intestine. The results suggest a strategy whereby invading pathogens gain advantage by simultaneously consuming several sugars that may be available because they are not consumed by the commensal intestinal microbiota.


Journal of Bacteriology | 2002

Gene Expression Profiling of the pH Response in Escherichia coli

Don L. Tucker; Nancy Tucker; Tyrrell Conway

Escherichia coli MG1655 acid-inducible genes were identified by whole-genome expression profiling. Cultures were grown to the mid-logarithmic phase on acidified glucose minimal medium, conditions that induce glutamate-dependent acid resistance (AR), while the other AR systems are either repressed or not induced. A total of 28 genes were induced in at least two of three experiments in which the gene expression profiles of cells grown in acid (pH 5.5 or 4.5) were compared to those of cells grown at pH 7.4. As expected, the genes encoding glutamate decarboxylase, gadA and gadB, were significantly induced. Interestingly, two acid-inducible genes code for small basic proteins with pIs of >10.5, and six code for small acidic proteins with pIs ranging from 5.7 to 4.0; the roles of these small basic and acidic proteins in acid resistance are unknown. The acid-induced genes represented only five functional grouping categories, including eight genes involved in metabolism, nine associated with cell envelope structures or modifications, two encoding chaperones, six regulatory genes, and six unknown genes. It is unlikely that all of these genes are involved in the glutamate-dependent AR. However, nine acid-inducible genes are clustered in the gadA region, including hdeA, which encodes a putative periplasmic chaperone, and four putative regulatory genes. One of these putative regulators, yhiE, was shown to significantly increase acid resistance when overexpressed in cells that had not been preinduced by growth at pH 5.5, and mutation of yhiE decreased acid resistance; yhiE could therefore encode an activator of AR genes. Thus, the acid-inducible genes clustered in the gadA region appear to be involved in glutatmate-dependent acid resistance, although their specific roles remain to be elucidated.


Molecular Microbiology | 2003

Microarray expression profiling: capturing a genome-wide portrait of the transcriptome.

Tyrrell Conway; Gary K. Schoolnik

The bacterial transcriptome is a dynamic entity that reflects the organisms immediate, ongoing and genome‐wide response to its environment. Microarray expression profiling provides a comprehensive portrait of the transcriptional world enabling us to view the organism as a ‘system’ that is more than the sum of its parts. The vigilance of microorganisms to environmental change, the alacrity of the transcriptional response, the short half‐life of bacterial mRNA and the genome‐scale nature of the investigation collectively explain the power of this method. These same features pose the most significant experimental design and execution issues which, unless surmounted, predictably generate a distorted image of the transcriptome. Conversely, the expression profile of a properly conceived and conducted microarray experiment can be used for hypothesis testing: disclosure of the metabolic and biosynthetic pathways that underlie adaptation of the organism to chang‐ing conditions of growth; the identification of co‐ordinately regulated genes; the regulatory circuits and signal transduction systems that mediate the adaptive response; and temporal features of developmental programmes. The study of bacterial pathogenesis by microarray expression profiling poses special challenges and opportunities. Although the technical hurdles are many, obtaining expression profiles of an organism growing in tissue will probably reveal strategies for growth and survival in the hosts microenvironment. Identifying these colonization strategies and their cognate expression patterns involves a ‘deconstruction’ process that combines bioinformatics analysis and in vitro DNA array experimentation.


Molecular Microbiology | 2003

GadE (YhiE) activates glutamate decarboxylase‐dependent acid resistance in Escherichia coli K‐12

Zhuo Ma; Shimei Gong; Hope Richard; Don L. Tucker; Tyrrell Conway; John W. Foster

Commensal and pathogenic strains of Escherichia coli possess three inducible acid resistance systems that collaboratively protect cells against acid stress to pH 2 or below. The most effective system requires glutamate in the acid challenge media and relies on two glutamate decarboxylases (GadA and B) combined with a putative glutamate:γ‐aminobutyric acid antiporter (GadC). A complex network of regulators mediates induction of this system in response to various media, pH and growth phase signals. We report that the LuxR‐like regulator GadE (formerly YhiE) is required for expression of gadA and gadBC regardless of media or growth conditions. This protein binds directly to the 20 bp GAD box sequence found in the control regions of both loci. Two previously identified AraC‐like regulators, GadX and GadW, are only needed for gadA/BC expression under some circumstances. Overexpression of GadX or GadW will not overcome a need for GadE. However, overexpression of GadE can supplant a requirement for GadX and W. Data provided also indicate that GadX and GadE can simultaneously bind the area around the GAD box region and probably form a complex. The gadA, gadBC and gadE genes are all induced by low pH in exponential phase cells grown in minimal glucose media. The acid induction of gadA/BC results primarily from the acid induction of gadE. Constitutive expression of GadE removes most pH control over the glutamate decarboxylase and antiporter genes. The small amount of remaining pH control is governed by GadX and W. The finding that gadE mutations also diminish the effectiveness of the other two acid resistance systems suggests that GadE influences the expression of additional acid resistance components. The number of regulatory proteins (five), sigma factors (two) and regulatory feedback loops focused on gadA/BC expression make this one of the most intensively regulated systems in E. coli.


Cell Host & Microbe | 2013

An Infection-Relevant Transcriptomic Compendium for Salmonella enterica Serovar Typhimurium

Carsten Kröger; Aoife Colgan; Shabarinath Srikumar; Kristian Händler; Sathesh K. Sivasankaran; Disa L. Hammarlöf; Rocío Canals; Joe E. Grissom; Tyrrell Conway; Karsten Hokamp; Jay C. D. Hinton

Bacterial transcriptional networks consist of hundreds of transcription factors and thousands of promoters. However, the true complexity of transcription in a bacterial pathogen and the effect of the environments encountered during infection remain to be established. We present a simplified approach for global promoter identification in bacteria using RNA-seq-based transcriptomic analyses of 22 distinct infection-relevant environmental conditions. Individual RNA samples were combined to identify most of the 3,838 Salmonella enterica serovar Typhimurium promoters in just two RNA-seq runs. Individual in vitro conditions stimulated characteristic transcriptional signatures, and the suite of 22 conditions induced transcription of 86% of all S. Typhimurium genes. We highlight the environmental conditions that induce the Salmonella pathogenicity islands and present a small RNA expression landscape of 280 sRNAs. This publicly available compendium of environmentally controlled expression of every transcriptional feature of S. Typhimurium constitutes a useful resource for the bacterial research community.


Infection and Immunity | 2007

Respiration of Escherichia coli in the Mouse Intestine

Shari A. Jones; Fatema Z. Chowdhury; Andrew J. Fabich; April B. Anderson; Darrel M. Schreiner; Anetra L. House; Steven M. Autieri; Mary P. Leatham; Jeremy J. Lins; Mathias Jorgensen; Paul S. Cohen; Tyrrell Conway

ABSTRACT Mammals are aerobes that harbor an intestinal ecosystem dominated by large numbers of anaerobic microorganisms. However, the role of oxygen in the intestinal ecosystem is largely unexplored. We used systematic mutational analysis to determine the role of respiratory metabolism in the streptomycin-treated mouse model of intestinal colonization. Here we provide evidence that aerobic respiration is required for commensal and pathogenic Escherichia coli to colonize mice. Our results showed that mutants lacking ATP synthase, which is required for all respiratory energy-conserving metabolism, were eliminated by competition with respiratory-competent wild-type strains. Mutants lacking the high-affinity cytochrome bd oxidase, which is used when oxygen tensions are low, also failed to colonize. However, the low-affinity cytochrome bo3 oxidase, which is used when oxygen tension is high, was found not to be necessary for colonization. Mutants lacking either nitrate reductase or fumarate reductase also had major colonization defects. The results showed that the entire E. coli population was dependent on both microaerobic and anaerobic respiration, consistent with the hypothesis that the E. coli niche is alternately microaerobic and anaerobic, rather than static. The results indicate that success of the facultative anaerobes in the intestine depends on their respiratory flexibility. Despite competition for relatively scarce carbon sources, the energy efficiency provided by respiration may contribute to the widespread distribution (i.e., success) of E. coli strains as commensal inhabitants of the mammalian intestine.


Journal of Bacteriology | 2002

Collaborative Regulation of Escherichia coli Glutamate-Dependent Acid Resistance by Two AraC-Like Regulators, GadX and GadW (YhiW)

Zhuo Ma; Hope Richard; Don L. Tucker; Tyrrell Conway; John W. Foster

An important feature of Escherichia coli pathogenesis is an ability to withstand extremely acidic environments of pH 2 or lower. This acid resistance property contributes to the low infectious dose of pathogenic E. coli species. One very efficient E. coli acid resistance system encompasses two isoforms of glutamate decarboxylase (gadA and gadB) and a putative glutamate:gamma-amino butyric acid (GABA) antiporter (gadC). The system is subject to complex controls that vary with growth media, growth phase, and growth pH. Previous work has revealed that the system is controlled by two sigma factors, two negative regulators (cyclic AMP receptor protein [CRP] and H-NS), and an AraC-like regulator called GadX. Earlier evidence suggested that the GadX protein acts both as a positive and negative regulator of the gadA and gadBC genes depending on environmental conditions. New data clarify this finding, revealing a collaborative regulation between GadX and another AraC-like regulator called GadW (previously YhiW). GadX and GadW are DNA binding proteins that form homodimers in vivo and are 42% homologous to each other. GadX activates expression of gadA and gadBC at any pH, while GadW inhibits GadX-dependent activation. Regulation of gadA and gadBC by either regulator requires an upstream, 20-bp GAD box sequence. Northern blot analysis further indicates that GadW represses expression of gadX. The results suggest a control circuit whereby GadW interacts with both the gadA and gadX promoters. GadW clearly represses gadX and, in situations where GadX is missing, activates gadA and gadBC. GadX, however, activates only gadA and gadBC expression. CRP also represses gadX expression. It does this primarily by repressing production of sigma S, the sigma factor responsible for gadX expression. In fact, the acid induction of gadA and gadBC observed when rich-medium cultures enter stationary phase corresponds to the acid induction of sigma S production. These complex control circuits impose tight rein over expression of the gadA and gadBC system yet provide flexibility for inducing acid resistance under many conditions that presage acid stress.


Infection and Immunity | 2009

Precolonized Human Commensal Escherichia coli Strains Serve as a Barrier to E. coli O157:H7 Growth in the Streptomycin-Treated Mouse Intestine

Mary P. Leatham; Swati Banerjee; Steven M. Autieri; Regino Mercado-Lubo; Tyrrell Conway; Paul S. Cohen

ABSTRACT Different Escherichia coli strains generally have the same metabolic capacity for growth on sugars in vitro, but they appear to use different sugars in the streptomycin-treated mouse intestine (Fabich et al., Infect. Immun. 76:1143-1152, 2008). Here, mice were precolonized with any of three human commensal strains (E. coli MG1655, E. coli HS, or E. coli Nissle 1917) and 10 days later were fed 105 CFU of the same strains. While each precolonized strain nearly eliminated its isogenic strain, confirming that colonization resistance can be modeled in mice, each allowed growth of the other commensal strains to higher numbers, consistent with different commensal E. coli strains using different nutrients in the intestine. Mice were also precolonized with any of five commensal E. coli strains for 10 days and then were fed 105 CFU of E. coli EDL933, an O157:H7 pathogen. E. coli Nissle 1917 and E. coli EFC1 limited growth of E. coli EDL933 in the intestine (103 to 104 CFU/gram of feces), whereas E. coli MG1655, E. coli HS, and E. coli EFC2 allowed growth to higher numbers (106 to 107 CFU/gram of feces). Importantly, when E. coli EDL933 was fed to mice previously co-colonized with three E. coli strains (MG1655, HS, and Nissle 1917), it was eliminated from the intestine (<10 CFU/gram of feces). These results confirm that commensal E. coli strains can provide a barrier to infection and suggest that it may be possible to construct E. coli probiotic strains that prevent growth of pathogenic E. coli strains in the intestine.

Collaboration


Dive into the Tyrrell Conway's collaboration.

Top Co-Authors

Avatar

Paul S. Cohen

University of Rhode Island

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mary P. Leatham

University of Rhode Island

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David C. Laux

University of Rhode Island

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Suxiang Tong

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge