Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tyson G. Taylor is active.

Publication


Featured researches published by Tyson G. Taylor.


IEEE Transactions on Neural Systems and Rehabilitation Engineering | 2011

Object Discrimination With an Artificial Hand Using Electrical Stimulation of Peripheral Tactile and Proprioceptive Pathways With Intrafascicular Electrodes

Kenneth W. Horch; Sanford G. Meek; Tyson G. Taylor; Douglas T. Hutchinson

Trans-radial amputee subjects were implanted with intrafascicular electrodes in the stumps of the median and ulnar nerves. Electrical stimulation through these electrodes was used to provide sensations of touch and finger position referred to the amputated hand. Two subjects were asked to identify different objects as to size and stiffness by manipulating them with a myo-electric hand without visual or auditory cues. Both subjects were provided with information about contact force with the objects via tactile sensations referred to their phantom hands. One subject, who was provided with information about finger position in the prosthetic hand via a different tactile sensation referred to his phantom hand, was unable to correctly identify the objects. The other subject, who received information about finger position via a proprioceptive sensation referred to his phantom hand, correctly identified the objects at a level statistically significantly above chance performance.


American Journal of Physiology-heart and Circulatory Physiology | 2010

High-precision recording of the action potential in isolated cardiomyocytes using the near-infrared fluorescent dye di-4-ANBDQBS

Mark Warren; Kenneth W. Spitzer; Bruce W. Steadman; Tyler David Rees; Paul W. Venable; Tyson G. Taylor; Junko Shibayama; Ping Yan; Joseph P. Wuskell; Leslie M. Loew; Alexey V. Zaitsev

The use of voltage-sensitive fluorescent dyes (VSD) for noninvasive measurement of the action potential (AP) in isolated cells has been hindered by low-photon yield of the preparation, dye toxicity, and photodynamic damage. Here we used a new red-shifted VSD, di-4-ANBDQBS, and a fast electron-multiplied charge-coupled device camera for optical AP (OAP) recording in guinea pig cardiac myocytes. Loading di-4-ANBDQBS did not alter APs recorded with micropipette. With short laser exposures (just enough to record one OAP every 1-5 min), di-4-ANBDQBS yielded fluorescent signals with very high signal-to-background ratios (change in fluorescence on depolarization/fluorescence at resting potential: 19.2 ± 4.1%) and signal-to-noise ratios (40 ± 13.2). Quantum chemical calculations comparing the ANBDQ chromophore to the conventional ANEP chromophore showed that the higher wavelength and the greater voltage sensitivity of the former have the same electro-optical origin: a longer path for electron redistribution in the excited state. OAP closely tracked simultaneously recorded electrical APs, permitting measurement of AP duration within 1% error. Prolonged laser exposure caused progressive AP duration prolongation and instability. However, these effects were alleviated or abolished by reducing the dye concentration and by perfusion with antioxidants. Thus the presented technique provides a unique opportunity for noninvasive AP recording in single cardiomyocytes.


American Journal of Physiology-heart and Circulatory Physiology | 2010

Complex structure of electrophysiological gradients emerging during long-duration ventricular fibrillation in the canine heart.

Paul W. Venable; Tyson G. Taylor; Junko Shibayama; Mark Warren; Alexey V. Zaitsev

Long-duration ventricular fibrillation (LDVF) in the globally ischemic heart is a common setting of cardiac arrest. Electrical heterogeneities during LDVF may affect outcomes of defibrillation and resuscitation. Previous studies in large mammalian hearts have investigated the role of Purkinje fibers and electrophysiological gradients between the endocardium (Endo) and epicardium (Epi). Much less is known about gradients between the right ventricle (RV) and left ventricle (LV) and within each chamber during LDVF. We studied the transmural distribution of the VF activation rate (VFR) in the RV and LV and at the junction of RV, LV, and septum (Sep) during LDVF using plunge needle electrodes in opened-chest dogs. We also used optical mapping to analyze the Epi distribution of VFR, action potential duration (APD), and diastolic interval (DI) during LDVF in the RV and LV of isolated hearts. Transmural VFR gradients developed in both the RV and LV, with a faster VFR in Endo. Concurrently, large VFR gradients developed in Epi, with the fastest VFR in the RV-Sep junction, intermediate in the RV, and slowest in the LV. Optical mapping revealed a progressively increasing VFR dispersion within both the LV and RV, with a mosaic presence of fully inexcitable areas after 4-8 min of LDVF. The transmural, interchamber, and intrachamber VFR heterogeneities were of similar magnitude. In both chambers, the inverse of VFR was highly correlated with DI, but not APD, at all time points of LDVF. We conclude that the complex VFR gradients during LDVF in the canine heart cannot be explained solely by the distribution of Purkinje fibers and are related to regional differences in the electrical depression secondary to LDVF.


American Journal of Physiology-heart and Circulatory Physiology | 2012

Role of KATP channel in electrical depression and asystole during long-duration ventricular fibrillation in ex vivo canine heart.

Tyson G. Taylor; Paul W. Venable; Junko Shibayama; Mark Warren; Alexey V. Zaitsev

Long-duration ventricular fibrillation (LDVF) in the globally ischemic heart is characterized by transmurally heterogeneous decline in ventricular fibrillation rate (VFR), emergence of inexcitable regions, and eventual global asystole. Rapid loss of both local and global excitability is detrimental to successful defibrillation and resuscitation during cardiac arrest. We sought to assess the role of the ATP-sensitive potassium current (I(KATP)) in the timing and spatial pattern of electrical depression during LDVF in a structurally normal canine heart. We analyzed endo-, mid-, and epicardial unipolar electrograms and epicardial optical recordings in the left ventricle of isolated canine hearts during 10 min of LDVF in the absence (control) and presence of an I(KATP) blocker glybenclamide (60 μM). In all myocardial layers, average VFR was the same or higher in glybenclamide-treated than in control hearts. The difference increased with time of LDVF and was overall significant in all layers (P < 0.05). However, glybenclamide did not significantly affect the transmural VFR gradient. In epicardial optical recordings, glybenclamide shortened diastolic intervals, prolonged action potential duration, and decreased the percentage of inexcitable area (all differences P < 0.001). During 10 min of LDVF, asystole occurred in 55.6% of control and none of glybenclamide-treated hearts (P < 0.05). In three hearts paced after the onset of asystole, there was no response to LV epicardial or atrial pacing. In structurally normal canine hearts, I(KATP) opening during LDVF is a major factor in the onset of local and global inexcitability, whereas it has a limited role in overall deceleration of VFR and the transmural VFR gradient.


The Journal of Physiology | 2013

Detection of mitochondrial depolarization/recovery during ischaemia–reperfusion using spectral properties of confocally recorded TMRM fluorescence

Paul W. Venable; Tyson G. Taylor; Katie J. Sciuto; Jerry Zhao; Junko Shibayama; Mark Warren; Kenneth W. Spitzer; Alexey V. Zaitsev

•  Mitochondrial inner membrane potential (ΔΨm) collapse during myocardial ischaemia is one of the key events determining the physiological consequences of ischaemic attack in terms of post‐ischaemic arrhythmias and cell survival. •  Timing and pattern of ΔΨm collapse during ischaemia remain controversial, in part due to difficulties in interpreting the fluorescence of potentiometric cationic probes commonly used for assessment of ΔΨm in cellular and multicellular experimental models. •  This manuscript presents a new method for monitoring ΔΨm in whole hearts based on the regular arrangement of mitochondria in cardiac myocytes, thus permitting detection of ΔΨm collapse using spectral analysis of fluorescence. •  The proposed method will help to ascertain the role of mitochondrial function in acute cardiovascular conditions, such as acute myocardial infarction or sudden cardiac arrest.


PLOS ONE | 2013

Metabolic Determinants of Electrical Failure in Ex-Vivo Canine Model of Cardiac Arrest: Evidence for the Protective Role of Inorganic Pyrophosphate

Junko Shibayama; Tyson G. Taylor; Paul W. Venable; Nathaniel L. Rhodes; Ryan B. Gil; Mark Warren; Adam R. Wende; E. Dale Abel; James Cox; Kenneth W. Spitzer; Alexey V. Zaitsev

Rationale Deterioration of ventricular fibrillation (VF) into asystole or severe bradycardia (electrical failure) heralds a fatal outcome of cardiac arrest. The role of metabolism in the timing of electrical failure remains unknown. Objective To determine metabolic factors of early electrical failure in an Ex-vivo canine model of cardiac arrest (VF+global ischemia). Methods and Results Metabolomic screening was performed in left ventricular biopsies collected before and after 0.3, 2, 5, 10 and 20 min of VF and global ischemia. Electrical activity was monitored via plunge needle electrodes and pseudo-ECG. Four out of nine hearts exhibited electrical failure at 10.1±0.9 min (early-asys), while 5/9 hearts maintained VF for at least 19.7 min (late-asys). As compared to late-asys, early-asys hearts had more ADP, less phosphocreatine, and higher levels of lactate at some time points during VF/ischemia (all comparisons p<0.05). Pre-ischemic samples from late-asys hearts contained ∼25 times more inorganic pyrophosphate (PPi) than early-asys hearts. A mechanistic role of PPi in cardioprotection was then tested by monitoring mitochondrial membrane potential (ΔΨ) during 20 min of simulated-demand ischemia using potentiometric probe TMRM in rabbit adult ventricular myocytes incubated with PPi versus control group. Untreated myocytes experienced significant loss of ΔΨ while in the PPi-treated myocytes ΔΨ was relatively maintained throughout 20 min of simulated-demand ischemia as compared to control (p<0.05). Conclusions High tissue level of PPi may prevent ΔΨm loss and electrical failure at the early phase of ischemic stress. The link between the two protective effects may involve decreased rates of mitochondrial ATP hydrolysis and lactate accumulation.


American Journal of Physiology-heart and Circulatory Physiology | 2017

Blockade of CaMKII depresses conduction preferentially in the right ventricular outflow tract and promotes ischemic ventricular fibrillation in the rabbit heart

Mark Warren; Katie J. Sciuto; Tyson G. Taylor; Vivek Garg; Natalia S. Torres; Junko Shibayama; Kenneth W. Spitzer; Alexey V. Zaitsev

Calcium/calmodulin-dependent protein kinase II (CaMKII) regulates the principle ion channels mediating cardiac excitability and conduction, but how this regulation translates to the normal and ischemic heart remains unknown. Diverging results on CaMKII regulation of Na+ channels further prevent predicting how CaMKII activity regulates excitability and conduction in the intact heart. To address this deficiency, we tested the effects of the CaMKII blocker KN93 (1 and 2.75 μM) and its inactive analog KN92 (2.75 μM) on conduction and excitability in the left (LV) and right (RV) ventricles of rabbit hearts during normal perfusion and global ischemia. We used optical mapping to determine local conduction delays and the optical action potential (OAP) upstroke velocity (dV/dtmax). At baseline, local conduction delays were similar between RV and LV, whereas the OAP dV/dtmax was lower in RV than in LV. At 2.75 μM, KN93 heterogeneously slowed conduction and reduced dV/dtmax, with the largest effect in the RV outflow tract (RVOT). This effect was further exacerbated by ischemia, leading to recurrent conduction block in the RVOT and early ventricular fibrillation (at 6.7 ± 0.9 vs. 18.2 ± 0.8 min of ischemia in control, P < 0.0001). Neither KN92 nor 1 μM KN93 depressed OAP dV/dtmax or conduction. Rabbit cardiomyocytes isolated from RVOT exhibited a significantly lower dV/dtmax than those isolated from the LV. KN93 (2.75 μM) significantly reduced dV/dtmax in cells from both locations. This led to frequency-dependent intermittent activation failure occurring predominantly in RVOT cells. Thus CaMKII blockade exacerbates intrinsically lower excitability in the RVOT, which is proarrhythmic during ischemia.NEW & NOTEWORTHY We show that calcium/calmodulin-dependent protein kinase II (CaMKII) blockade exacerbates intrinsically lower excitability in the right ventricular outflow tract, which causes highly nonuniform chamber-specific slowing of conduction and facilitates ventricular fibrillation during ischemia. Constitutive CaMKII activity is necessary for uniform and safe ventricular conduction, and CaMKII block is potentially proarrhythmic.


American Journal of Physiology-heart and Circulatory Physiology | 2015

Mitochondrial depolarization and asystole in the globally ischemic rabbit heart: coordinated response to interventions affecting energy balance

Paul W. Venable; Katie J. Sciuto; Mark Warren; Tyson G. Taylor; Vivek Garg; Junko Shibayama; Alexey V. Zaitsev

Mitochondrial membrane potential (ΔΨm) depolarization has been implicated in the loss of excitability (asystole) during global ischemia, which is relevant for the success of defibrillation and resuscitation after cardiac arrest. However, the relationship between ΔΨm depolarization and asystole during no-flow ischemia remains unknown. We applied spatial Fourier analysis to confocally recorded fluorescence emitted by ΔΨm-sensitive dye tetramethylrhodamine methyl ester. The time of ischemic ΔΨm depolarization (tmito_depol) was defined as the time of 50% decrease in the magnitude of spectral peaks reflecting ΔΨm. The time of asystole (tasys) was determined as the time when spontaneous and induced ventricular activity ceased to exist. Interventions included tachypacing (150 ms), myosin II ATPase inhibitor blebbistatin (heart immobilizer), and the combination of blebbistatin and the inhibitor of glycolysis iodoacetate. In the absence of blebbistatin, confocal images were obtained during brief perfusion with hyperkalemic solution and after the contraction failed between 7 and 15 min of ischemia. In control, tmito_depol and tasys were 24.4 ± 6.0 and 26.0 ± 5.0 min, respectively. Tachypacing did not significantly affect either parameter. Blebbistatin dramatically delayed tmito_depol and tasys (51.4 ± 8.6 and 45.7 ± 5.3 min, respectively; both P < 0.0001 vs. control). Iodoacetate combined with blebbistatin accelerated both events (tmito_depol, 12.7 ± 1.8 min; and tasys, 6.5 ± 1.1 min; both P < 0.03 vs. control). In all groups pooled together, tasys was strongly correlated with tmito_depol (R(2) = 0.845; P < 0.0001). These data may indicate a causal relationship between ΔΨm depolarization and asystole or a similar dependence of the two events on energy depletion during ischemia. Our results urge caution against the use of blebbistatin in studies addressing pathophysiology of myocardial ischemia.


American Journal of Physiology-heart and Circulatory Physiology | 2013

Does the combination of hyperkalemia and KATP activation determine excitation rate gradient and electrical failure in the globally ischemic fibrillating heart

Tyson G. Taylor; Paul W. Venable; Alicja Booth; Vivek Garg; Junko Shibayama; Alexey V. Zaitsev

Ventricular fibrillation (VF) in the globally ischemic heart is characterized by a progressive electrical depression manifested as a decline in the VF excitation rate (VFR) and loss of excitability, which occur first in the subepicardium (Epi) and spread to the subendocardium (Endo). Early electrical failure is detrimental to successful defibrillation and resuscitation during cardiac arrest. Hyperkalemia and/or the activation of ATP-sensitive K(+) (KATP) channels have been implicated in electrical failure, but the role of these factors in ischemic VF is poorly understood. We determined the VFR-extracellular K(+) concentration ([K(+)]o) relationship in the Endo and Epi of the left ventricle during VF in globally ischemic hearts (Isch group) and normoxic hearts subjected to hyperkalemia (HighK group) or a combination of hyperkalemia and the KATP channel opener cromakalim (HighK-Crom group). In the Isch group, Endo and Epi values of [K(+)]o and VFR were compared in the early (0-6 min), middle (7-13 min), and late (14-20 min) phases of ischemic VF. A significant transmural gradient in VFR (Endo > Epi) was observed in all three phases, whereas a significant transmural gradient in [K(+)]o (Epi > Endo) occurred only in the late phase of ischemic VF. In the Isch group, the VFR decrease and inexcitability started to occur at much lower [K(+)]o than in the HighK group, especially in the Epi. Combining KATP activation with hyperkalemia only shifted the VFR-[K(+)]o curve upward (an effect opposite to real ischemia) without changing the [K(+)]o threshold for asystole. We conclude that hyperkalemia and/or KATP activation cannot adequately explain the heterogeneous electrical depression and electrical failure during ischemic VF.


American Journal of Physiology-heart and Circulatory Physiology | 2015

β-Adrenergic stimulation and rapid pacing mutually promote heterogeneous electrical failure and ventricular fibrillation in the globally ischemic heart

Vivek Garg; Tyson G. Taylor; Mark Warren; Paul W. Venable; Katie J. Sciuto; Junko Shibayama; Alexey V. Zaitsev

Global ischemia, catecholamine surge, and rapid heart rhythm (RHR) due to ventricular tachycardia or ventricular fibrillation (VF) are the three major factors of sudden cardiac arrest (SCA). Loss of excitability culminating in global electrical failure (asystole) is the major adverse outcome of SCA with increasing prevalence worldwide. The roles of catecholamines and RHR in the electrical failure during SCA remain unclear. We hypothesized that both β-adrenergic stimulation (βAS) and RHR accelerate electrical failure in the globally ischemic heart. We performed optical mapping of the action potential (OAP) in the right ventricular (RV) and left (LV) ventricular epicardium of isolated rabbit hearts subjected to 30-min global ischemia. Hearts were paced at a cycle length of either 300 or 200 ms, and either in the presence or in the absence of β-agonist isoproterenol (30 nM). 2,3-Butanedione monoxime (20 mM) was used to reduce motion artifact. We found that RHR and βAS synergistically accelerated the decline of the OAP upstroke velocity and the progressive expansion of inexcitable regions. Under all conditions, inexcitability developed faster in the LV than in the RV. At the same time, both RHR and βAS shortened the time to VF (TVF) during ischemia. Moreover, the time at which 10% of the mapped LV area became inexcitable strongly correlated with TVF (R(2) = 0 .72, P < 0.0001). We conclude that both βAS and RHR are major factors of electrical depression and failure in the globally ischemic heart and may contribute to adverse outcomes of SCA such as asystole and recurrent/persistent VF.

Collaboration


Dive into the Tyson G. Taylor's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge