Tyson J. Moyer
Northwestern University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tyson J. Moyer.
ACS Nano | 2011
Stephen Soukasene; Daniel J. Toft; Tyson J. Moyer; Hsuming Lu; Hyung Kun Lee; Stephany M. Standley; Vincent L. Cryns; Samuel I. Stupp
Self-assembling peptide amphiphile (PA) nanofibers were used to encapsulate camptothecin (CPT), a naturally occurring hydrophobic chemotherapy agent, using a solvent evaporation technique. Encapsulation by PA nanofibers was found to improve the aqueous solubility of the CPT molecule by more than 50-fold. PAs self-assembled into nanofibers in the presence of CPT as demonstrated by transmission electron microscopy. Small-angle X-ray scattering results suggest a slight increase in diameter of the nanofiber to accommodate the hydrophobic cargo. In vitro studies using human breast cancer cells show an enhancement in antitumor activity of the CPT when encapsulated by the PA nanofibers. In addition, using a mouse orthotopic model of human breast cancer, treatment with PA nanofiber-encapsulated CPT inhibited tumor growth. These results highlight the potential of this model PA system to be adapted for delivery of hydrophobic therapies to treat a variety of diseases including cancer.
Journal of the American Chemical Society | 2014
Tyson J. Moyer; Joel A. Finbloom; Feng Chen; Daniel J. Toft; Vincent L. Cryns; Samuel I. Stupp
Supramolecular self-assembly offers promising new ways to control nanostructure morphology and respond to external stimuli. A pH-sensitive self-assembled system was developed to both control nanostructure shape and respond to the acidic microenvironment of tumors using self-assembling peptide amphiphiles (PAs). By incorporating an oligo-histidine H6 sequence, we developed two PAs that self-assembled into distinct morphologies on the nanoscale, either as nanofibers or spherical micelles, based on the incorporation of the aliphatic tail on the N-terminus or near the C-terminus, respectively. Both cylinder and sphere-forming PAs demonstrated reversible disassembly between pH 6.0 and 6.5 upon protonation of the histidine residues in acidic solutions. These PAs were then characterized and assessed for their potential to encapsulate hydrophobic chemotherapies. The H6-based nanofiber assemblies encapsulated camptothecin (CPT) with up to 60% efficiency, a 7-fold increase in CPT encapsulation relative to spherical micelles. Additionally, pH-sensitive nanofibers showed improved tumor accumulation over both spherical micelles and nanofibers that did not change morphologies in acidic environments. We have demonstrated that the morphological transitions upon changes in pH of supramolecular nanostructures affect drug encapsulation and tumor accumulation. Our findings also suggest that these supramolecular events can be tuned by molecular design to improve the pharmacologic properties of nanomedicines.
Journal of the American Chemical Society | 2013
Yves Ruff; Tyson J. Moyer; Christina J. Newcomb; Borries Demeler; Samuel I. Stupp
We report here the preparation of filamentous virus-like particles by the encapsulation of a linear or circular double-stranded DNA template with preassembled mushroom-shaped nanostructures having a positively charged domain. These nanostructures mimic the capsid proteins of natural filamentous viruses and are formed by self-assembly of coiled-coil peptides conjugated at opposite termini with cationic segments and poly(ethylene glycol) (PEG) chains. We found that a high molecular weight of PEG segments was critical for the formation of monodisperse and uniformly shaped filamentous complexes. It is proposed that electrostatic attachment of the nanostructures with sufficiently long PEG segments generates steric forces that increase the rigidity of the neutralized DNA template. This stiffening counterbalances the natural tendency of the DNA template to condense into toroids or buckle multiple times. The control achieved over both shape and dimensions of the particles offers a strategy to create one-dimensional supramolecular nanostructures of defined length containing nucleic acids.
Journal of Physical Chemistry B | 2013
Tyson J. Moyer; Honggang Cui; Samuel I. Stupp
Peptide amphiphiles are molecules containing a peptide segment covalently bonded to a hydrophobic tail and are known to self-assemble in water into supramolecular nanostructures with shape diversity ranging from spheres to cylinders, twisted ribbons, belts, and tubes. Understanding the self-assembly mechanisms to control dimensions and shapes of the nanostructures remains a grand challenge. We report here on a systematic study of peptide amphiphiles containing valine-glutamic acid dimeric repeats known to promote self-assembly into belt-like flat assemblies. We find that the lateral growth of the assemblies can be controlled in the range of 100 nm down to 10 nm as the number of dimeric repeats is increased from two to six. Using circular dichroism, the degree of β-sheet twisting within the supramolecular assemblies was found to be directly proportional to the number of dimeric repeats in the PA molecule. Interestingly, as twisting increased, a threshold is reached where cylinders rather than flat assemblies become the dominant morphology. We also show that in the belt regime, the width of the nanostructures can be decreased by raising the pH to increase charge density and therefore electrostatic repulsion among glutamic acid residues. The control of size and shape of these nanostructures should affect their functions in biological signaling and drug delivery.
Small | 2015
Tyson J. Moyer; Hussein A. Kassam; Edward S.M. Bahnson; Courtney E. Morgan; Faifan Tantakitti; Teng L. Chew; Melina R. Kibbe; Samuel I. Stupp
Targeting of vascular intervention by systemically delivered supramolecular nanofibers after balloon angioplasty is described. Tracking of self-assembling peptide amphiphiles using fluorescence shows selective binding to the site of vascular intervention. Cylindrical nanostructures are observed to target the site of arterial injury, while spherical nanostructures with an equivalent diameter display no binding.
ACS Nano | 2014
Adam T. Preslar; Giacomo Parigi; Mark T. McClendon; Samantha S. Sefick; Tyson J. Moyer; Chad R. Haney; Emily A. Waters; Keith W. MacRenaris; Claudio Luchinat; Samuel I. Stupp; Thomas J. Meade
Bioactive supramolecular nanostructures are of great importance in regenerative medicine and the development of novel targeted therapies. In order to use supramolecular chemistry to design such nanostructures, it is extremely important to track their fate in vivo through the use of molecular imaging strategies. Peptide amphiphiles (PAs) are known to generate a wide array of supramolecular nanostructures, and there is extensive literature on their use in areas such as tissue regeneration and therapies for disease. We report here on a series of PA molecules based on the well-established β-sheet amino acid sequence V3A3 conjugated to macrocyclic Gd(III) labels for magnetic resonance imaging (MRI). These conjugates were shown to form cylindrical supramolecular assemblies using cryogenic transmission electron microscopy and small-angle X-ray scattering. Using nuclear magnetic relaxation dispersion analysis, we observed that thermal annealing of the nanostructures led to a decrease in water exchange lifetime (τm) of hundreds of nanoseconds only for molecules that self-assemble into nanofibers of high aspect ratio. We interpret this decrease to indicate more solvent exposure to the paramagnetic moiety on annealing, resulting in faster water exchange within angstroms of the macrocycle. We hypothesize that faster water exchange in the nanofiber-forming PAs arises from the dehydration and increase in packing density on annealing. Two of the self-assembling conjugates were selected for imaging PAs after intramuscular injections of the PA C16V3A3E3-NH2 in the tibialis anterior muscle of a murine model. Needle tracts were clearly discernible with MRI at 4 days postinjection. This work establishes Gd(III) macrocycle-conjugated peptide amphiphiles as effective tracking agents for peptide amphiphile materials in vivo over the timescale of days.
Antioxidants & Redox Signaling | 2016
Edward S.M. Bahnson; Hussein A. Kassam; Tyson J. Moyer; Wulin Jiang; Courtney E. Morgan; Janet M. Vercammen; Qun Jiang; Megan E. Flynn; Samuel I. Stupp; Melina R. Kibbe
AIMS Cardiovascular interventions continue to fail as a result of arterial restenosis secondary to neointimal hyperplasia. We sought to develop and evaluate a systemically delivered nanostructure targeted to the site of arterial injury to prevent neointimal hyperplasia. Nanostructures were based on self-assembling biodegradable molecules known as peptide amphiphiles. The targeting motif was a collagen-binding peptide, and the therapeutic moiety was added by S-nitrosylation of cysteine residues. RESULTS Structure of the nanofibers was characterized by transmission electron microscopy and small-angle X-ray scattering. S-nitrosylation was confirmed by mass spectrometry, and nitric oxide (NO) release was assessed electrochemically and by chemiluminescent detection. The balloon carotid artery injury model was performed on 10-week-old male Sprague-Dawley rats. Immediately after injury, nanofibers were administered systemically via tail vein injection. S-nitrosylated (S-nitrosyl [SNO])-targeted nanofibers significantly reduced neointimal hyperplasia 2 weeks and 7 months following balloon angioplasty, with no change in inflammation. INNOVATION This is the first time that an S-nitrosothiol (RSNO)-based therapeutic was shown to have targeted local effects after systemic administration. This approach, combining supramolecular nanostructures with a therapeutic NO-based payload and a targeting moiety, overcomes the limitations of delivering NO to a site of interest, avoiding undesirable systemic side effects. CONCLUSION We successfully synthesized and characterized an RSNO-based therapy that when administered systemically, targets directly to the site of vascular injury. By integrating therapeutic and targeting chemistries, these targeted SNO nanofibers provided durable inhibition of neointimal hyperplasia in vivo and show great potential as a platform to treat cardiovascular diseases.
ACS Nano | 2015
Adam T. Preslar; Giacomo Parigi; Mark T. McClendon; Samantha S. Sefick; Tyson J. Moyer; Chad R. Haney; Emily A. Waters; Keith W. MacRenaris; Claudio Luchinat; Samuel I. Stupp; Thomas J. Meade
Page 7328. In Figure Figure2B2B, the leftmost panel is a cryogenic TEM image of PA2 rather than PA1. We include here a corrected panel for PA1. No conclusions or analysis in the work are affected by this correction. Figure 2B Image of PA1 nanofibers after thermal annealing. Scale bar is 200 nm.
ACS Nano | 2012
Daniel J. Toft; Tyson J. Moyer; Stephany M. Standley; Yves Ruff; Andrey Ugolkov; Samuel I. Stupp; Vincent L. Cryns
Chemical Communications | 2012
Jessica A. Lehrman; Honggang Cui; Wei Wen Tsai; Tyson J. Moyer; Samuel I. Stupp