Tzanko I. Doukov
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tzanko I. Doukov.
Journal of Biological Inorganic Chemistry | 2004
Catherine L. Drennan; Tzanko I. Doukov; Stephen W. Ragsdale
Eight Ni proteins are known and three of these, CO dehydrogenase (CODH), acetyl-CoA synthase (ACS), and hydrogenase, are Ni-Fe-S proteins. In the last three years, the long-awaited structures of CODH and ACS have been solved. The bioinorganic community was shocked, as the structures of the active sites of CODH and ACS, the C- and A-cluster, respectively, which each had been predicted to consist of a [Fe4S4] cluster bridged to a single Ni, revealed unexpected compositions and arrangements. Crystal structures of ACS revealed major differences in protein conformation and in A-cluster composition; for example, a [Fe4S4] cluster bridged to a binuclear center in which one of the metal binding sites was occupied by Ni, Cu, or Zn. Recent studies have revealed Ni-Ni to be the active state, unveiled the source of the heterogeneity that had plagued studies of CODH/ACS for decades, and produced a metal-replacement strategy to generate highly active and nearly homogeneous enzyme.
Biochemistry | 2008
Tzanko I. Doukov; Leah C. Blasiak; Javier Seravalli; Stephen W. Ragsdale; Catherine L. Drennan
A fascinating feature of some bifunctional enzymes is the presence of an internal channel or tunnel to connect the multiple active sites. A channel can allow for a reaction intermediate generated at one active site to be used as a substrate at a second active site, without the need for the intermediate to leave the safety of the protein matrix. One such bifunctional enzyme is carbon monoxide dehydrogenase/acetyl-CoA synthase from Moorella thermoacetica (mtCODH/ACS). A key player in the global carbon cycle, CODH/ACS uses a Ni-Fe-S center called the C-cluster to reduce carbon dioxide to carbon monoxide and uses a second Ni-Fe-S center, called the A-cluster, to assemble acetyl-CoA from a methyl group, coenzyme A, and C-cluster-generated CO. mtCODH/ACS has been proposed to contain one of the longest enzyme channels (138 A long) to allow for intermolecular CO transport. Here, we report a 2.5 A resolution structure of xenon-pressurized mtCODH/ACS and examine the nature of gaseous cavities within this enzyme. We find that the cavity calculation program CAVENV accurately predicts the channels connecting the C- and A-clusters, with 17 of 19 xenon binding sites within the predicted regions. Using this X-ray data, we analyze the amino acid composition surrounding the 19 Xe sites and consider how the protein fold is utilized to carve out such an impressive interior passageway. Finally, structural comparisons of Xe-pressurized mtCODH/ACS with related enzyme structures allow us to study channel design principles, as well as consider the conformational flexibility of an enzyme that contains a cavity through its center.
Biochemistry | 2010
Yergalem T. Meharenna; Tzanko I. Doukov; Huiying Li; S.M. Soltis; Thomas L. Poulos
The ferryl [Fe(IV)O] intermediate is important in many heme enzymes, and thus, the precise nature of the Fe(IV)-O bond is critical in understanding enzymatic mechanisms. The 1.40 A crystal structure of cytochrome c peroxidase Compound I has been determined as a function of X-ray dose while the visible spectrum was being monitored. The Fe-O bond increases in length from 1.73 A in the low-X-ray dose structure to 1.90 A in the high-dose structure. The low-dose structure correlates well with an Fe(IV) horizontal lineO bond, while we postulate that the high-dose structure is the cryo-trapped Fe(III)-OH species previously thought to be an Fe(IV)-OH species.
Biochemistry | 2009
Yan Kung; Tzanko I. Doukov; Javier Seravalli; Stephen W. Ragsdale; Catherine L. Drennan
Nickel-containing carbon monoxide dehydrogenases (CODHs) reversibly catalyze the oxidation of carbon monoxide to carbon dioxide and are of vital importance in the global carbon cycle. The unusual catalytic CODH C-cluster has been crystallographically characterized as either a NiFe4S4 or a NiFe4S5 metal center, the latter containing a fifth, additional sulfide that bridges Ni and a unique Fe site. To determine whether this bridging sulfide is catalytically relevant and to further explore the mechanism of the C-cluster, we obtained crystal structures of the 310 kDa bifunctional CODH/acetyl-CoA synthase complex from Moorella thermoacetica bound both with a substrate H2O/OH− molecule and with a cyanide inhibitor. X-ray diffraction data were collected from native crystals and from identical crystals soaked in a solution containing potassium cyanide. In both structures, the substrate H2O/OH− molecule exhibits binding to the unique Fe site of the C-cluster. We also observe cyanide binding in a bent conformation to Ni of the C-cluster, adjacent the substrate H2O/OH− molecule. Importantly, the bridging sulfide is not present in either structure. As these forms of the C-cluster represent the coordination environment immediately before the reaction takes place, our findings do not support a fifth, bridging sulfide playing a catalytic role in the enzyme mechanism. The crystal structures presented here, along with recent structures of CODHs from other organisms, have led us toward a unified mechanism for CO oxidation by the C-cluster, the catalytic center of an environmentally important enzyme.
Nature | 2012
Yan Kung; Nozomi Ando; Tzanko I. Doukov; Leah C. Blasiak; Güneş Bender; Javier Seravalli; Stephen W. Ragsdale; Catherine L. Drennan
Derivatives of vitamin B12 are used in methyl group transfer in biological processes as diverse as methionine synthesis in humans and CO2 fixation in acetogenic bacteria. This seemingly straightforward reaction requires large, multimodular enzyme complexes that adopt multiple conformations to alternately activate, protect and perform catalysis on the reactive B12 cofactor. Crystal structures determined thus far have provided structural information for only fragments of these complexes, inspiring speculation about the overall protein assembly and conformational movements inherent to activity. Here we present X-ray crystal structures of a complete 220 kDa complex that contains all enzymes responsible for B12-dependent methyl transfer, namely the corrinoid iron–sulphur protein and its methyltransferase from the model acetogen Moorella thermoacetica. These structures provide the first three-dimensional depiction of all protein modules required for the activation, protection and catalytic steps of B12-dependent methyl transfer. In addition, the structures capture B12 at multiple locations between its ‘resting’ and catalytic positions, allowing visualization of the dramatic protein rearrangements that enable methyl transfer and identification of the trajectory for B12 movement within the large enzyme scaffold. The structures are also presented alongside in crystallo spectroscopic data, which confirm enzymatic activity within crystals and demonstrate the largest known conformational movements of proteins in a crystalline state. Taken together, this work provides a model for the molecular juggling that accompanies turnover and helps explain why such an elaborate protein framework is required for such a simple, yet biologically essential reaction.
Journal of Biological Chemistry | 2007
Tzanko I. Doukov; Hisashi Hemmi; Catherine L. Drennan; Stephen W. Ragsdale
The methyltetrahydrofolate (CH3-H4folate) corrinoid-iron-sulfur protein (CFeSP) methyltransferase (MeTr) catalyzes transfer of the methyl group of CH3-H4folate to cob(I)amide. This key step in anaerobic CO and CO2 fixation is similar to the first half-reaction in the mechanisms of other cobalamin-dependent methyltransferases. Methyl transfer requires electrophilic activation of the methyl group of CH3-H4folate, which includes proton transfer to the N5 group of the pterin ring and poises the methyl group for reaction with the Co(I) nucleophile. The structure of the binary CH3-H4folate/MeTr complex (revealed here) lacks any obvious proton donor near the N5 group. Instead, an Asn residue and water molecules are found within H-bonding distance of N5. Structural and kinetic experiments described here are consistent with the involvement of an extended H-bonding network in proton transfer to N5 of the folate that includes an Asn (Asn-199 in MeTr), a conserved Asp (Asp-160), and a water molecule. This situation is reminiscent of purine nucleoside phosphorylase, which involves protonation of the purine N7 in the transition state and is accomplished by an extended H-bond network that includes water molecules, a Glu residue, and an Asn residue (Kicska, G. A., Tyler, P. C., Evans, G. B., Furneaux, R. H., Shi, W., Fedorov, A., Lewandowicz, A., Cahill, S. M., Almo, S. C., and Schramm, V. L. (2002) Biochemistry 41, 14489-14498). In MeTr, the Asn residue swings from a distant position to within H-bonding distance of the N5 atom upon CH3-H4folate binding. An N199A variant exhibits only ∼20-fold weakened affinity for CH3-H4folate but a much more marked 20,000-40,000-fold effect on catalysis, suggesting that Asn-199 plays an important role in stabilizing a transition state or high energy intermediate for methyl transfer.
Biochemistry | 2009
B Liu; Ying Chen; Tzanko I. Doukov; S.M Soltis; C.D. Stout; James A. Fee
Three paths for obtaining crystals of reduced (II-E4Q/I-K258R) cytochrome ba(3) are described, and the structures of these are reported at approximately 2.8-3.0 A resolution. Microspectrophotometry of single crystals of Thermus ba(3) oxidase at 100 K was used to show that crystals of the oxidized enzyme are reduced in an intense X-ray (beam line 7-1 at the Stanford Synchrotron Radiation Laboratory), being nearly complete in 1 min. The previously reported structures of ba(3) (Protein Data Bank entries 1EHK and 1XME ), having a crystallographically detectable water between the Cu(B) and Fe(a3) metals of the dinuclear center, actually represent the X-ray radiation-reduced enzyme. Dithionite-reduced crystals or crystals formed from dithionite-reduced enzyme revealed the absence of the above-mentioned water and an increase in the Cu(B)-Fe(a3) distance of approximately 0.3 A. The new structures are discussed in terms of enzyme function. An unexpected optical absorption envelope at approximately 590 nm is also reported. This spectral feature is tentatively thought to arise from a five-coordinate, low-spin, ferrous heme a(3) that is trapped in the frozen crystals.
Journal of Biological Chemistry | 2006
M. Gordon Joyce; Colin Levy; Krisztina Gábor; Stelian M. Pop; Benjamin D. Biehl; Tzanko I. Doukov; Jodi M. Ryter; Hortense Mazon; Hauke Smidt; Robert H. H. van den Heuvel; Stephen W. Ragsdale; John van der Oost; David Leys
Halorespiration is a bacterial respiratory process in which haloorganic compounds act as terminal electron acceptors. This process is controlled at transcriptional level by CprK, a member of the ubiquitous CRP-FNR family. Here we present the crystal structures of oxidized CprK in presence of the ligand ortho-chlorophenolacetic acid and of reduced CprK in absence of this ligand. These structures reveal that highly specific binding of chlorinated, rather than the corresponding non-chlorinated, phenolic compounds in the NH2-terminal β-barrels causes reorientation of these domains with respect to the central α-helix at the dimer interface. Unexpectedly, the COOH-terminal DNA-binding domains dimerize in the non-DNA binding state. We postulate the ligand-induced conformational change allows formation of interdomain contacts that disrupt the DNA domain dimer interface and leads to repositioning of the helix-turn-helix motifs. These structures provide a structural framework for further studies on transcriptional control by CRP-FNR homologs in general and of halorespiration regulation by CprK in particular.
Journal of Molecular Biology | 2010
Anson C. K. Chan; Tzanko I. Doukov; Melanie Scofield; Stacey A. L. Tom-Yew; Alexander Ramin; Joanna K. MacKichan; Erin C. Gaynor; Michael E. P. Murphy
Campylobacter jejuni, a major cause of acute bacterial diarrhea in humans, expresses numerous proteins to import diverse forms of essential iron. The expression of p19 and an adjacent iron transporter homologue (ftr1) is strongly induced upon iron limitation, suggesting a function in iron acquisition. Here, we show that the loss of P19 alone is detrimental to growth on iron-restricted media. Furthermore, metal binding analysis demonstrates that recombinant P19 has distinct copper and iron binding sites. Crystal structures of P19 have been solved to 1.41 A resolution, revealing an immunoglobulin-like fold. A P19 homodimer in which both monomers contribute ligands to two equivalent copper sites located adjacent to methionine-rich patches is observed. Copper coordination occurs via three histidine residues (His42, His95, and His132) and Met88. A solvent channel lined with conserved acidic residues leads to the copper site. Soaking crystals with a solution of manganese as iron analog reveals a second metal binding site in this solvent channel (metal-metal distance, 7.7 A). Glu44 lies between the metal sites and displays multiple conformations in the crystal structures, suggesting a role in regulating metal-metal interaction. Dimerization is shown to be metal dependent in vitro and is detected in vivo by cross-linking.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Georges Chreifi; Elizabeth L. Baxter; Tzanko I. Doukov; Aina E. Cohen; Scott E. McPhillips; Jinhu Song; Yergalem T. Meharenna; S. Michael Soltis; Thomas L. Poulos
Significance A major problem in determining the crystal structures of metalloenzymes is that the reducing power of X-rays often changes the oxidation state of the metal center, thereby complicating important mechanistic conclusions on enzyme function. This reduction is especially problematic in studying Fe(IV)=O intermediates, which are powerful oxidants used by many metalloenzymes. This problem can be circumvented using the Stanford Linear Coherent Light Source (LCLS), which generates intense X-ray pulses on the femtosecond time scale and enables structure determinations with no reduction of metal centers. Here, we report the crystal structure of the Fe(IV)=O peroxidase intermediate called compound I using data obtained from the LCLS. We also present kinetic and computational results that, together with crystal structures, provide important mechanistic insights. The reaction of peroxides with peroxidases oxidizes the heme iron from Fe(III) to Fe(IV)=O and a porphyrin or aromatic side chain to a cationic radical. X-ray–generated hydrated electrons rapidly reduce Fe(IV), thereby requiring very short exposures using many crystals, and, even then, some reduction cannot be avoided. The new generation of X-ray free electron lasers capable of generating intense X-rays on the tenths of femtosecond time scale enables structure determination with no reduction or X-ray damage. Here, we report the 1.5-Å crystal structure of cytochrome c peroxidase (CCP) compound I (CmpI) using data obtained with the Stanford Linear Coherent Light Source (LCLS). This structure is consistent with previous structures. Of particular importance is the active site water structure that can mediate the proton transfer reactions required for both CmpI formation and reduction of Fe(IV)=O to Fe(III)-OH. The structures indicate that a water molecule is ideally positioned to shuttle protons between an iron-linked oxygen and the active site catalytic His. We therefore have carried out both computational and kinetic studies to probe the reduction of Fe(IV)=O. Kinetic solvent isotope experiments show that the transfer of a single proton is critical in the peroxidase rate-limiting step, which is very likely the proton-coupled reduction of Fe(IV)=O to Fe(III)-OH. We also find that the pKa of the catalytic His substantially increases in CmpI, indicating that this active site His is the source of the proton required in the reduction of Fe(IV)=O to Fe(IV)-OH.