Tzeng-Fu Chen
Taipei Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tzeng-Fu Chen.
European Journal of Pharmacology | 2003
Ming Yi Shen; Kuan Hung Lin; Chin Yi Chou; Nien Hsuan Tzu; Chien Huang Lin; Duen Suey Chou; Tzeng-Fu Chen; Joen Rong Sheu
Kinetin has been shown to have anti-aging effects on several different systems, including plants and human cells. Recently, we demonstrated that kinetin markedly inhibited platelet aggregation in washed human platelets. In the present study, an electron spin resonance (ESR) method was used to further evaluate the scavenging activity of kinetin on the free radicals formed. Kinetin (70 and 150 microM) concentration dependently reduced the ESR signal intensity of hydroxyl radicals in collagen (1 microg/ml)-activated platelets. Furthermore, kinetin was effective in reducing the mortality of ADP-induced acute pulmonary thromboembolism in mice when administered intravenously at doses of 4 and 6 mg/kg. In addition, intravenous injection of kinetin (4 and 6 mg/kg) significantly prolonged the bleeding time by approximately 1.9- and 2.1-fold as compared with normal saline in severed mesenteric arteries of rats. A continuous infusion of kinetin (0.6 mg/kg/min) for 10 min also significantly increased the bleeding time by about 2.3-fold, and the bleeding time returned to baseline within 120 min after cessation of kinetin infusion. Platelet thrombi formation was induced by irradiation of mesenteric venules with filtered light in mice pretreated intravenously with fluorescein sodium. When kinetin was administered at 13 and 14 mg/kg in mice pretreated with fluorescein sodium (5 mg/kg), the occlusion time was significantly prolonged. In conclusion, these results suggest that kinetin has effective free radical-scavenging activity in vitro and antithrombotic activity in vivo. Treatment with kinetin may lower the risk of thromboembolic-related disorders. Therefore, kinetin may be a potential therapeutic agent for arterial thrombosis, but its toxicity must be further assessed.
Journal of Biomedical Science | 2004
Ming Yi Shen; Duen Suey Chou; Chien Huang Lin; Tzeng-Fu Chen; Joen Rong Sheu
Magnesium sulfate is widely used to prevent seizures in pregnant women with hypertension. The aim of this study was to examine the inhibitory mechanisms of magnesium sulfate in platelet aggregation in vitro. In this study, magnesium sulfate concentration-dependently (0.6–3.0 mM) inhibited platelet aggregation in human platelets stimulated by agonists. Magnesium sulfate (1.5 and 3.0 mM) also concentration-dependently inhibited phosphoinositide breakdown and intracellular Ca+2 mobilization in human platelets stimulated by thrombin. Rapid phosphorylation of a platelet protein of Mr 47,000 (P47), a marker of protein kinase C activation, was triggered by phorbol-12-13-dibutyrate (PDBu, 50 nM). This phosphorylation was markedly inhibited by magnesium sulfate (3.0 mM). Magnesium sulfate (1.5 and 3.0 mM) further inhibited PDBu-stimulated platelet aggregation in human platelets. The thrombin-evoked increase in pHi was markedly inhibited in the presence of magnesium sulfate (3.0 mM). In conclusion, these results indicate that the antiplatelet activity of magnesium sulfate may be involved in the following two pathways: (1) Magnesium sulfate may inhibit the activation of protein kinase C, followed by inhibition of phosphoinositide breakdown and intracellular Ca+2 mobilization, thereby leading to inhibition of the phosphorylation of P47. (2) On the other hand, magnesium sulfate inhibits the Na+/H+ exchanger, leading to reduced intracellular Ca+2 mobilization, and ultimately to inhibition of platelet aggregation and the ATP-release reaction.
Platelets | 2003
Joen Rong Sheu; Ming-Yi Shen; C. Y. Chou; Chien Huang Lin; Tzeng-Fu Chen; Duen-Suey Chou
Kinetin has been shown to have anti-aging effects on several different systems including plants and human cells. The aim of this study was to examine the detailed inhibitory mechanisms of kinetin in platelet aggregation. In this study, kinetin concentration-dependently (50-150 μM) inhibited platelet aggregation in human platelets stimulated by agonists. Kinetin (70 and 150 μM) also concentration-dependently inhibited intracellular Ca2+ mobilization and phosphoinositide breakdown in platelets stimulated by collagen (1 μg/ml). Kinetin (70 and 150 μM) significantly inhibited thromboxane A2 formation stimulated by collagen (1 μg/ml) and arachidonic acid (60 μM) in human platelets. In addition, kinetin (70 and 150 μM) significantly increased the formation of cyclic AMP. Intracellular pH values were measured spectrofluorometrically using the fluorescent probe BCECF-AM in platelets. The thrombin-evoked increase in pHi was markedly inhibited in the presence of kinetin (70 and 150 μM). Rapid phosphorylation of a platelet protein of molecular weight (Mr) 47 000 (P47), a marker of protein kinase C activation, was triggered by collagen (1 μg/ml). This phosphorylation was inhibited by kinetin (70 and 150 μM). In conclusion, these results indicate that the anti-platelet activity of kinetin may be involved in the following pathways: kinetins effects may initially be due to inhibition of the activation of phospholipase C and the Na+/H+ exchanger. This leads to lower intracellular Ca2+ mobilization, followed by inhibition of TxA2 formation and then increased cyclic AMP formation, followed by a further inhibition of the Na+/H+ exchanger, ultimately resulting in markedly decreased intracellular Ca2+ mobilization and phosphorylation of P47. These results suggest that kinetin has an effective anti-platelet effect and that it may be a potential therapeutic agent for arterial thrombosis.
Journal of Biomedical Science | 2003
Ming Yi Shen; Chiao Ling Fang; Duen Suey Chou; Chien Huang Lin; Tzeng-Fu Chen; Joen Rong Sheu
The detailed mechanisms underlying morphine-signaling pathways in platelets remain obscure. Therefore, we systematically examined the influence of morphine on washed human platelets. In this study, washed human platelet suspensions were used for in vitro studies. Furthermore, platelet thrombus formation induced by irradiation of mesenteric venules with filtered light in mice pretreated with fluorescein sodium was used for an in vivo thrombotic study. Morphine concentration dependently (0.6, 1, and 5 µM) potentiated platelet aggregation and the ATP release reaction stimulated by agonists (i.e., collagen and U46619) in washed human platelets. Yohimbine (0.1 µM), a specific α2-adrenoceptor antagonist, markedly abolished the potentiation of morphine in platelet aggregation stimulated by agonists. Morphine also potentiated phosphoinositide breakdown and intracellular Ca2+ mobilization in human platelets stimulated by collagen (1 µg/ml). Moreover, morphine (0.6–5 µM) markedly inhibited prostaglandin E1 (10 µM)-induced cyclic AMP formation in human platelets, while yohimbine (0.1 µM) significantly reversed the inhibition of cyclic AMP by morphine (0.6 and 1 µM) in this study. The thrombin-evoked increase in pHi was markedly potentiated in the presence of morphine (1 and 5 µM). Morphine (2 and 5 mg/g) significantly shortened the time require to induce platelet plug formation in mesenteric venules. We concluded that morphine may exert its potentiation in platelet aggregation by binding to α2-adrenoceptors in human platelets, with a resulting inhibition of adenylate cyclase, thereby reducing intracellular cyclic AMP formation followed by increased activation of phospholipase C and the Na+/H+ exchanger. This leads to increased intracellular Ca2+ mobilization, and finally potentiation of platelet aggregation and of the ATP release reaction.
Journal of Biomedical Science | 2002
Joen Rong Sheu; Wen Yi Lin; Tzeng-Fu Chen; Yi Yi Chien; Chien Huang Lin; Chiu Ruey Tzeng
There is substantial evidence of increased platelet reactivity in vivo and in vitro during pregnancy. Platelet activation occurs in pregnancy with a risk of the development of preeclampsia. In this study, platelet behavior was studied during 28–40 weeks of gestation in a group of women who remained normotensive and a group of nonpregnant female controls. Platelet aggregation and ATP release stimulated by agonists (i.e. collagen and adenosine 5′-diphosphate) were markedly enhanced in washed platelets from pregnant subjects. Furthermore, the collagen-evoked increase in intracellular Ca2+ ([Ca2+]i) mobilization in fura-2-AM-loaded platelets was also enhanced in pregnant subjects. Moreover, the binding activity of fluorescein isothiocyanate-triflavin toward the platelet glycoprotein IIb/IIIa complex did not significantly differ between the nonpregnant and pregnant groups. In addition, the amount of thromboxane A2 (TxA2) formation from pregnant subjects was significantly greater than that from nonpregnant subjects in both resting and collagen-activated platelets. On the other hand, prostaglandin E2 formation in the presence of imidazole in either resting or arachidonic acid (100 µM)-treated platelets did not significantly differ between these two groups. The levels of cyclic AMP formation in both resting and prostaglandin E1 (10 µM)-treated platelets from pregnant subjects were significantly lower than those in nonpregnant subjects. Nitric oxide production was measured by a chemiluminescence detection method in this study. The extent of nitrate production in either resting or collagen-stimulated platelets from pregnant subjects did not significantly differ from that of platelets from the nonpregnant group. We conclude that the agonist-induced hyperaggregability of platelets from normal pregnancy may be due, at least partly, to an increase in TxA2 formation and a lowering of the level of cyclic AMP formation, which leads to increased [Ca2+]i mobilization and finally to enhanced platelet aggregation and ATP release.
Lipids | 2004
Duen Suey Chou; Ming Yi Shen; Tsorng Harn Fong; Chien Huang Lin; Tzeng-Fu Chen; Joen Rong Sheu
The intracellular mechanisms underlying oxidized low density lipoprotein (oxLDL)-signaling pathways in platelets remain obscure and findings have been controversial. Therefore, we examined the influence of oxLDL in washed human platelets. In this study oxLDL concentration-dependently (20–100 μg/mL) inhibited platelet aggregation in human platelets stimulated by collagen (1 μg/mL) and arachidonic acid (60 μM), but not by thrombin (0.02 U/mL). The activity of oxLDL was greater at 24 h in inhibiting platelet aggregation than at 12 h. At 24 h, oxLDL concentration-dependently inhibited intracellular Ca2+ mobilization and thromboxane B2 formation in human platelets stimulated by collagen. In addition, at 24 h oxLDL (40 and 80 μg/mL) significantly increased the formation of cyclic AMP, but not cyclic GMP or nitrate. In an ESR study, 24 h-oxLDL (40 μg/mL) markedly reduced the ESR signal intensity of hydroxyl radicals (OH−) in both collagen (2 μg/mL)-activated platelets and Fenton reaction (H2O2+Fe2+). The inhibitory effect of oxLDL may induce radical-radical termination reactions by oxLDL-derived lipid radical interactions with free radicals (such as hydroxyl radicals) released from activated platelets, with a resultant lowering of intracellular Ca2+ mobilization followed by inhibition of thromboxane A2 formation, thereby leading to increased cyclic AMP formation and finally inhibited platelet aggregation. This study provides new insights concerning the effect of oxLDL in platelet aggregation.
Free Radical Biology and Medicine | 2005
Duen Suey Chou; Ming Yi Shen; Yan Jyu Tsai; Tzeng-Fu Chen; Joen Rong Sheu
Journal of Agricultural and Food Chemistry | 2007
Duen Suey Chou; Jie Jen Lee; Cheng Ying Hsieh; Yan Jyu Tsai; Tzeng-Fu Chen; Joen Rong Sheu
Journal of Agricultural and Food Chemistry | 2005
Ching Yi Chang; Ming Yi Shen; Duen Suey Chou; Shu Hw Tzeng; Tzeng-Fu Chen; Joen Rong Sheu
Journal of Biomedical Science | 2006
Duen Suey Chou; Chih Hsiang Chan; Ming Yi Shen; Yan Jyu Tsai; Tzeng-Fu Chen; Joen Rong Sheu