Tzili Pleban
Hebrew University of Jerusalem
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tzili Pleban.
Nature Biotechnology | 2006
Nicolas Schauer; Yaniv Semel; Ute Roessner; Amit Gur; Ilse Balbo; Fernando Carrari; Tzili Pleban; Alicia Perez-Melis; Claudia Bruedigam; Joachim Kopka; Lothar Willmitzer; Dani Zamir; Alisdair R. Fernie
Tomato represents an important source of fiber and nutrients in the human diet and is a central model for the study of fruit biology. To identify components of fruit metabolic composition, here we have phenotyped tomato introgression lines (ILs) containing chromosome segments of a wild species in the genetic background of a cultivated variety. Using this high-diversity population, we identify 889 quantitative fruit metabolic loci and 326 loci that modify yield-associated traits. The mapping analysis indicates that at least 50% of the metabolic loci are associated with quantitative trait loci (QTLs) that modify whole-plant yield-associated traits. We generate a cartographic network based on correlation analysis that reveals whole-plant phenotype associated and independent metabolic associations, including links with metabolites of nutritional and organoleptic importance. The results of our genomic survey illustrate the power of genome-wide metabolic profiling and detailed morphological analysis for uncovering traits with potential for crop breeding.
Theoretical and Applied Genetics | 1994
D. Zamir; I. Ekstein-Michelson; Y. Zakay; N. Navot; M. Zeidan; M. Sarfatti; Yuval Eshed; E. Harel; Tzili Pleban; H. van-Oss; N. Kedar; H.D. Rabinowitch; H. Czosnek
The whitefly-transmitted tomato yellow-leaf curl gemini-virus (TYLCV) is a major pathogen of tomatoes. The wild tomato species Lycopersicon chilense, which is resistant to the virus, was crossed to the cultivated tomato, L. esculentum. The backcross-1 selfed (BC1S1) generation was inoculated and a symptomless plant was selected. This plant was analyzed using 61 molecular markers, which span the tomato genome, to determine which L. chilense chromosome segments were introgressed. A BC2S1 population was cage-inoculated with viroliferous whiteflies (Bemisia tabaci), the natural insect vector of the virus, and subjected to RFLP analysis. Markers on chromosomes 3 and 6 were significantly associated with the level of tolerance; the association of chromosome-6 markers was further substantiated in two additional BC2S1 populations. A tolerant BC2S1 plant which was homozygous for L. chilense introgressions in chromosomes 3, 6 and 7 was crossed to generate a BC3S1 population which was planted in an infested field. A TYLCV-tolerance gene with partial dominance, TY-1, was mapped to chromosome 6; two modifier genes were mapped to chromosomes 3 and 7. Field and whitefly-mediated cage inoculations of nearly-isogenic lines in BC3S3 supported our conclusion that TY-1 is the major TYLCV-tolerance locus.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Yaniv Semel; Jonathan Nissenbaum; Naama Menda; Michael Zinder; Uri Krieger; Noa Issman; Tzili Pleban; Zachary Lippman; Amit Gur; Dani Zamir
Heterosis, or hybrid vigor, is a major genetic force that contributes to world food production. The genetic basis of heterosis is not clear, and the importance of loci with overdominant (ODO) effects is debated. One problem has been the use of whole-genome segregating populations, where interactions often mask the effects of individual loci. To assess the contribution of ODO to heterosis in the absence of epistasis, we carried out quantitative genetic and phenotypic analyses on a population of tomato (Solanum lycopersicum) introgression lines (ILs), which carry single marker-defined chromosome segments from the distantly related wild species Solanum pennellii. The ILs revealed 841 quantitative trait loci (QTL) for 35 diverse traits measured in the field on homozygous and heterozygous plants. ILs showing greater reproductive fitness were characterized by the prevalence of ODO QTL, which were virtually absent for the nonreproductive traits. ODO can result from true ODO due to allelic interactions of a single gene or from pseudoODO that involves linked loci with dominant alleles in repulsion. The fact that we detected dominant and recessive QTL for all phenotypic categories but ODO only for the reproductive traits indicates that pseudoODO due to random linkage is unlikely to explain heterosis in the ILs. Thus, we favor the true ODO model involving a single functional Mendelian locus. We propose that the alliance of ODO QTL with higher reproductive fitness was selected for in evolution and was domesticated by man to improve yields of crop plants.
The Plant Cell | 2008
Nicolas Schauer; Yaniv Semel; Ilse Balbo; Matthias Steinfath; Dirk Repsilber; Joachim Selbig; Tzili Pleban; Dani Zamir; Alisdair R. Fernie
To evaluate components of fruit metabolic composition, we have previously metabolically phenotyped tomato (Solanum lycopersicum) introgression lines containing segmental substitutions of wild species chromosome in the genetic background of a cultivated variety. Here, we studied the hereditability of the fruit metabolome by analyzing an additional years harvest and evaluating the metabolite profiles of lines heterozygous for the introgression (ILHs), allowing the evaluation of putative quantitative trait locus (QTL) mode of inheritance. These studies revealed that most of the metabolic QTL (174 of 332) were dominantly inherited, with relatively high proportions of additively (61 of 332) or recessively (80 of 332) inherited QTL and a negligible number displaying the characteristics of overdominant inheritance. Comparison of the mode of inheritance of QTL revealed that several metabolite pairs displayed a similar mode of inheritance of QTL at the same chromosomal loci. Evaluation of the association between morphological and metabolic traits in the ILHs revealed that this correlation was far less prominent, due to a reduced variance in the harvest index within this population. These data are discussed in the context of genomics-assisted breeding for crop improvement, with particular focus on the exploitation of wide biodiversity.
The Plant Cell | 2015
Saleh Alseekh; Takayuki Tohge; Regina Wendenberg; Federico Scossa; Nooshin Omranian; Jie Li; Sabrina Kleessen; Patrick Giavalisco; Tzili Pleban; Bernd Mueller-Roeber; Dani Zamir; Zoran Nikoloski; Alisdair R. Fernie
Metabolite QTL for secondary metabolism in a Solanum pennelli introgression line population show different modes of inheritance and network properties linking the traits. A large-scale metabolic quantitative trait loci (mQTL) analysis was performed on the well-characterized Solanum pennellii introgression lines to investigate the genomic regions associated with secondary metabolism in tomato fruit pericarp. In total, 679 mQTLs were detected across the 76 introgression lines. Heritability analyses revealed that mQTLs of secondary metabolism were less affected by environment than mQTLs of primary metabolism. Network analysis allowed us to assess the interconnectivity of primary and secondary metabolism as well as to compare and contrast their respective associations with morphological traits. Additionally, we applied a recently established real-time quantitative PCR platform to gain insight into transcriptional control mechanisms of a subset of the mQTLs, including those for hydroxycinnamates, acyl-sugar, naringenin chalcone, and a range of glycoalkaloids. Intriguingly, many of these compounds displayed a dominant-negative mode of inheritance, which is contrary to the conventional wisdom that secondary metabolite contents decreased on domestication. We additionally performed an exemplary evaluation of two candidate genes for glycolalkaloid mQTLs via the use of virus-induced gene silencing. The combined data of this study were compared with previous results on primary metabolism obtained from the same material and to other studies of natural variance of secondary metabolism.
PLOS ONE | 2011
Oron Gar; Daniel J. Sargent; Ching-Jung Tsai; Tzili Pleban; Gil Shalev; David H. Byrne; Dani Zamir
Polyploidy is a pivotal process in plant evolution as it increase gene redundancy and morphological intricacy but due to the complexity of polysomic inheritance we have only few genetic maps of autopolyploid organisms. A robust mapping framework is particularly important in polyploid crop species, rose included (2n = 4x = 28), where the objective is to study multiallelic interactions that control traits of value for plant breeding. From a cross between the garden, peach red and fragrant cultivar Fragrant Cloud (FC) and a cut-rose yellow cultivar Golden Gate (GG), we generated an autotetraploid GGFC mapping population consisting of 132 individuals. For the map we used 128 sequence-based markers, 141 AFLP, 86 SSR and three morphological markers. Seven linkage groups were resolved for FC (Total 632 cM) and GG (616 cM) which were validated by markers that segregated in both parents as well as the diploid integrated consensus map. The release of the Fragaria vesca genome, which also belongs to the Rosoideae, allowed us to place 70 rose sequenced markers on the seven strawberry pseudo-chromosomes. Synteny between Rosa and Fragaria was high with an estimated four major translocations and six inversions required to place the 17 non-collinear markers in the same order. Based on a verified linear order of the rose markers, we could further partition each of the parents into its four homologous groups, thus providing an essential framework to aid the sequencing of an autotetraploid genome.
Trends in Plant Science | 2013
Saleh Alseekh; Itai Ofner; Tzili Pleban; Pasquale Tripodi; Francesco Di Dato; Maria Cammareri; Ayed G. Mohammad; Silvana Grandillo; Alisdair R. Fernie; Dani Zamir
Quantitative trait locus (QTL) genetics retains an important role in the study of biological and agronomic processes; however, its genetic resolution is often comparatively low. Community-based strategies are thus required to address this issue. Here we detail such a strategy wherein the widely used Solanum pennellii introgression lines (ILs) in the genetic background of the cultivated tomato (Solanum lycopersicum) are broken up into molecular marker-defined sublines as a community resource for map-based cloning.
Proceedings of the National Academy of Sciences of the United States of America | 2000
Eyal Fridman; Tzili Pleban; Dani Zamir
Theoretical and Applied Genetics | 2011
Amit Gur; Yaniv Semel; Sonia Osorio; Michael Friedmann; Saleh Seekh; Bilal Ghareeb; Ayed G. Mohammad; Tzili Pleban; Gabi Gera; Alisdair R. Fernie; Dani Zamir
Plant Journal | 2016
Itai Ofner; Justin Lashbrooke; Tzili Pleban; Asaph Aharoni; Dani Zamir