Tzu Cheng Chao
National Cheng Kung University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tzu Cheng Chao.
Magnetic Resonance Imaging | 2009
Tzu Cheng Chao; Ming Chung Chou; Pinchen Yang; Hsiao-Wen Chung; Ming Ting Wu
This study investigated the effects on the measurement of fractional anisotropy (FA) during interpolation of diffusion tensor images in spatial normalization, which is required for voxel-based statistics. Diffusion tensor imaging data were obtained from nine male patients with attention deficit/hyperactivity disorder and nine age-matched control subjects. Regions of interest were selected from the genu of corpus callosum (GCC) and the right anterior corona radiata (RACR), with FA values measured before and after spatial normalization using two interpolation algorithms: linear and rotationally linear. Computer simulations were performed to verify the experimental findings. Between-group difference in FA was observed in the GCC and RACR before spatial normalization (P<.00001). Interpolation reduced the measured FA values significantly (P<.00001 for both algorithms) but did not affect the group difference in the GCC. For the RACR, the between-group difference vanished (P=.968) after linear interpolation but was relatively unaffected by using rotationally linear interpolation (P=.00001). FA histogram analysis and computer simulations confirmed these findings. This work suggests that caution should be exercised in voxel-based group comparisons as spatial normalization may affect the FA value in nonnegligible degrees, particularly in brain areas with predominantly crossing fibers.
American Journal of Neuroradiology | 2015
P. Y. Lin; Tzu Cheng Chao; Ming Long Wu
BACKGROUND AND PURPOSE: Quantitative susceptibility mapping of the human brain has demonstrated strong potential in examining iron deposition, which may help in investigating possible brain pathology. This study assesses the reproducibility of quantitative susceptibility mapping across different imaging sites. MATERIALS AND METHODS: In this study, the susceptibility values of 5 regions of interest in the human brain were measured on 9 healthy subjects following calibration by using phantom experiments. Each of the subjects was imaged 5 times on 1 scanner with the same procedure repeated on 3 different 3T systems so that both within-site and cross-site quantitative susceptibility mapping precision levels could be assessed. Two quantitative susceptibility mapping algorithms, similar in principle, one by using iterative regularization (iterative quantitative susceptibility mapping) and the other with analytic optimal solutions (deterministic quantitative susceptibility mapping), were implemented, and their performances were compared. RESULTS: Results show that while deterministic quantitative susceptibility mapping had nearly 700 times faster computation speed, residual streaking artifacts seem to be more prominent compared with iterative quantitative susceptibility mapping. With quantitative susceptibility mapping, the putamen, globus pallidus, and caudate nucleus showed smaller imprecision on the order of 0.005 ppm, whereas the red nucleus and substantia nigra, closer to the skull base, had a somewhat larger imprecision of approximately 0.01 ppm. Cross-site errors were not significantly larger than within-site errors. Possible sources of estimation errors are discussed. CONCLUSIONS: The reproducibility of quantitative susceptibility mapping in the human brain in vivo is regionally dependent, and the precision levels achieved with quantitative susceptibility mapping should allow longitudinal and multisite studies such as aging-related changes in brain tissue magnetic susceptibility.
Journal of the Association for Information Science and Technology | 2006
I. Samoylenko; Tzu Cheng Chao; Wei Chih Liu; Chaomei Chen
We propose an approach to visualizing the scientific world and its evolution by constructing minimum spanning trees (MSTs) and a two‐dimensional map of scientific journals using the database of the Science Citation Index (SCI) during 1994–2001. The structures of constructed MSTs are consistent with the sorting of SCI categories. The map of science is constructed based on our MST results. Such a map shows the relation among various knowledge clusters and their citation properties. The temporal evolution of the scientific world can also be delineated in the map. In particular, this map clearly shows a linear structure of the scientific world, which contains three major domains including physical sciences, life sciences, and medical sciences. The interaction of various knowledge fields can be clearly seen from this scientific world map. This approach can be applied to various levels of knowledge domains.
Psychiatry Research-neuroimaging | 2008
Pinchen Yang; Pei Ning Wang; Kai-Hsiang Chuang; Yuh Jyh Jong; Tzu Cheng Chao; Ming Ting Wu
Brain abnormalities, as determined by structural magnetic resonance imaging (MRI), have been reported in patients with attention-deficit hyperactivity disorder (ADHD); however, female subjects have been underrepresented in previous reports. In this study, we used optimized voxel-based morphometry to compare the total and regional gray matter volumes between groups of 7- to 17-year-old ADHD and healthy children (total 114 subjects). Fifty-seven children with ADHD (n=57, 35 males and 22 females) and healthy children (n=57) received MRI scans. Segmented brain MRI images were normalized into standardized stereotactic space, modulated to allow volumetric analysis, smoothed and compared at the voxel level with statistical parametric mapping. Global volumetric comparisons between groups revealed that the total brain volumes of ADHD children were smaller than those of the control children. As for the regional brain analysis, the brain volumes of ADHD children were found to be bilaterally smaller in the following regions as compared with normal control values: the caudate nucleus and the cerebellum. There were two clusters of regional decrease in the female brain, left posterior cingulum and right precuneus, as compared with the male brain. Brain regions showing the interaction effect of diagnosis and gender were negligible. These results were consistent with the hypothesized dysfunctional systems in ADHD, and they also suggested that neuroanatomical abnormalities in ADHD were not influenced by gender.
Magnetic Resonance in Medicine | 2010
Tzu Cheng Chao; Hsiao-Wen Chung; W. Scott Hoge; Bruno Madore
As the number and complexity of partially sampled dynamic imaging methods continue to increase, reliable strategies to evaluate performance may prove most useful. In the present work, an analytical framework to evaluate given reconstruction methods is presented. A perturbation algorithm allows the proposed evaluation scheme to perform robustly without requiring knowledge about the inner workings of the method being evaluated. A main output of the evaluation process consists of a two‐dimensional modulation transfer function, an easy‐to‐interpret visual rendering of a methods ability to capture all combinations of spatial and temporal frequencies. Approaches to evaluate noise properties and artifact content at all spatial and temporal frequencies are also proposed. One fully sampled phantom and three fully sampled cardiac cine datasets were subsampled (R = 4 and 8) and reconstructed with the different methods tested here. A hybrid method, which combines the main advantageous features observed in our assessments, was proposed and tested in a cardiac cine application, with acceleration factors of 3.5 and 6.3 (skip factors of 4 and 8, respectively). This approach combines features from methods such as k‐t sensitivity encoding, unaliasing by Fourier encoding the overlaps in the temporal dimension‐sensitivity encoding, generalized autocalibrating partially parallel acquisition, sensitivity profiles from an array of coils for encoding and reconstruction in parallel, self, hybrid referencing with unaliasing by Fourier encoding the overlaps in the temporal dimension and generalized autocalibrating partially parallel acquisition, and generalized autocalibrating partially parallel acquisition–enhanced sensitivity maps for sensitivity encoding reconstructions. Magn Reson Med, 2010.
Journal of Magnetic Resonance | 2016
Cheng Chieh Cheng; Chang Sheng Mei; Jeffrey Duryea; Hsiao-Wen Chung; Tzu Cheng Chao; Lawrence P. Panych; Bruno Madore
PURPOSE To present a dual-pathway multi-echo steady state sequence and reconstruction algorithm to capture T2, T2(∗) and field map information. METHODS Typically, pulse sequences based on spin echoes are needed for T2 mapping while gradient echoes are needed for field mapping, making it difficult to jointly acquire both types of information. A dual-pathway multi-echo pulse sequence is employed here to generate T2 and field maps from the same acquired data. The approach might be used, for example, to obtain both thermometry and tissue damage information during thermal therapies, or susceptibility and T2 information from a same head scan, or to generate bonus T2 maps during a knee scan. RESULTS Quantitative T2, T2(∗) and field maps were generated in gel phantoms, ex vivo bovine muscle, and twelve volunteers. T2 results were validated against a spin-echo reference standard: A linear regression based on ROI analysis in phantoms provided close agreement (slope/R(2)=0.99/0.998). A pixel-wise in vivo Bland-Altman analysis of R2=1/T2 showed a bias of 0.034 Hz (about 0.3%), as averaged over four volunteers. Ex vivo results, with and without motion, suggested that tissue damage detection based on T2 rather than temperature-dose measurements might prove more robust to motion. CONCLUSION T2, T2(∗) and field maps were obtained simultaneously, from the same datasets, in thermometry, susceptibility-weighted imaging and knee-imaging contexts.
Journal of Computational Neuroscience | 2005
Tzu Cheng Chao; Chaomei Chen
Learning-induced synchronization of a neural network at various developing stages is studied by computer simulations using a pulse-coupled neural network model in which the neuronal activity is simulated by a one-dimensional map. Two types of Hebbian plasticity rules are investigated and their differences are compared. For both models, our simulations show a logarithmic increase in the synchronous firing frequency of the network with the culturing time of the neural network. This result is consistent with recent experimental observations. To investigate how to control the synchronization behavior of a neural network after learning, we compare the occurrence of synchronization for four networks with different designed patterns under the influence of an external signal. The effect of such a signal on the network activity highly depends on the number of connections between neurons. We discuss the synaptic plasticity and enhancement effects for a random network after learning at various developing stages.
Magnetic Resonance Imaging | 2011
Bruno Madore; W. Scott Hoge; Tzu Cheng Chao; Gary P. Zientara; Renxin Chu
Parallel imaging methods are routinely used to accelerate the image acquisition process in cardiac cine imaging. The addition of a temporal acceleration method, whereby k-space is sampled differently for different time frames, has been shown in prior work to improve image quality as compared to parallel imaging by itself. However, such temporal acceleration strategies prove difficult to combine with retrospectively gated cine imaging. The only currently published method to feature such combination, by Hansen et al. [Magn Reson Med 55 (2006) 85-91] tends to be associated with prohibitively long reconstruction times. The goal of the present work was to develop a retrospectively gated cardiac cine method that features both parallel imaging and temporal acceleration, capable of achieving significant acceleration factors on commonly available hardware and associated with reconstruction times short enough for practical use in a clinical context. Seven cardiac patients and a healthy volunteer were recruited and imaged, with acceleration factors of 3.5 or 4.5, using an eight-channel product cardiac array on a 1.5-T system. The prescribed FOV value proved slightly too small in three patients, and one of the patients had a bigemini condition. Despite these additional challenges, good-quality results were obtained for all slices and all patients, with a reconstruction time of 0.98±0.07 s per frame, or about 20 s for a 20-frame slice, using a single processor on a single PC. As compared to using parallel imaging by itself, the addition of a temporal acceleration strategy provided much resistance to artifacts.
Magnetic Resonance in Medicine | 2017
Tzu Cheng Chao; Jr yuan George Chiou; Stephan E. Maier; Bruno Madore
High angular resolution diffusion imaging (HARDI) is a well‐established method to help reveal the architecture of nerve bundles, but long scan times and geometric distortions inherent to echo planar imaging (EPI) have limited its integration into clinical protocols.
Magnetic Resonance Imaging | 2014
Pei Hsin Wu; Cheng Chieh Cheng; Ming Long Wu; Tzu Cheng Chao; Hsiao-Wen Chung; Teng Yi Huang
The dual echo steady-state (DESS) sequence has been shown successful in achieving fast T2 mapping with good precision. Under-estimation of T2, however, becomes increasingly prominent as the flip angle decreases. In 3D DESS imaging, therefore, the derived T2 values would become a function of the slice location in the presence of non-ideal slice profile of the excitation RF pulse. Furthermore, the pattern of slice-dependent variation in T2 estimates is dependent on the RF pulse waveform. Multi-slice 2D DESS imaging provides better inter-slice consistency, but the signal intensity is subject to integrated effects of within-slice distribution of the actual flip angle. Consequently, T2 measured using 2D DESS is prone to inaccuracy even at the designated flip angle of 90°. In this study, both phantom and human experiments demonstrate the above phenomena in good agreement with model prediction.