Tzu-Lung Lin
National Taiwan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tzu-Lung Lin.
BJA: British Journal of Anaesthesia | 2009
Tzu-Lung Lin; Yu-Chang Yeh; Feng-Sheng Lin; Yu-Jung Wang; Chiou-Ya Lin; Wei-Zen Sun; Shou-Zen Fan
BACKGROUND Perioperative use of dexmedetomidine is associated with reduction in postoperative analgesic requirements. This study examined whether dexmedetomidine added to i.v. patient-controlled analgesia (PCA) morphine could improve analgesia while reducing opioid-related side-effects. METHODS In this double-blinded, randomized, controlled study, 100 women undergoing abdominal total hysterectomy were allocated to receive either morphine 1 mg ml(-1) alone (Group M) or morphine 1 mg ml(-1) plus dexmedetomidine 5 microg ml(-1) (Group D) for postoperative i.v. PCA, which was programmed to deliver 1 ml per demand with a 5 min lockout interval and no background infusion. Cumulative PCA requirements, pain intensities, cardiovascular and respiratory variables, and PCA-related adverse events were recorded for 24 h after operation. RESULTS Compared with Group M, patients in Group D required 29% less morphine during the 0-24 h postoperative period and reported significantly lower pain levels from the second postoperative hour onwards and throughout the study. Whereas levels of sedation were similar between the groups at each observational time point, decreases in heart rate and mean blood pressure from presurgery baseline at 1, 2, and 4 h after operation were significantly greater in Group D (by a range of 5-7 beats min(-1) and 10-13%, respectively). The 4-24 h incidence of nausea was significantly lower in Group D (34% vs 56.3%, P<0.05). There was no bradycardia, hypotension, oversedation, or respiratory depression. CONCLUSIONS The addition of dexmedetomidine to i.v. PCA morphine resulted in superior analgesia, significant morphine sparing, less morphine-induced nausea, and was devoid of additional sedation and untoward haemodynamic changes.
The Journal of Infectious Diseases | 2008
Pei-Fang Hsieh; Tzu-Lung Lin; Cha-Ze Lee; Shih-Feng Tsai; Jin-Town Wang
BACKGROUND Klebsiella pneumoniae has become the predominant pathogen causing primary pyogenic liver abscess (PLA). METHODS K. pneumoniae was stimulated by human serum, and gene expression was analyzed by microarray. RESULTS Three putative iron acquisition systems, Yersinia high-pathogenicity island (HPI), iucABCDiutA, and iroA(iroNDCB), that increased in expression and predominated in PLA-associated K. pneumoniae strains were identified. By use of siderophore uptake assays, these 3 systems were confirmed to be siderophore-dependent iron acquisition systems. Only the irp2-iuc-iroA triple mutant showed decreased virulence in mice. Full-genome analysis of K. pneumoniae strain NTUH-K2044 identified 10 putative iron uptake systems. Seven of these 10 systems were TonB dependent, including Yersinia HPI, iucABCDiutA, and iroA. A tonB deletion mutant was demonstrated to have profound attenuation of virulence. Immunization with the tonB mutant resulted in seroconversion of extracellular polysaccharide antibodies and protective efficacy against subsequent exposure to the parental strain. CONCLUSIONS Iron uptake systems were the genes in K. pneumoniae that were highly up-regulated in response to sera. Although there are multiple iron transporter systems in NTUH-K2044, a mutation in all 3 loci (irp2, iuc, and iroA) is necessary to decrease virulence. The tonB mutant is a potential vaccine candidate because it can induce a significant protective immune response against challenge with a wild-type strain.
Journal of Clinical Microbiology | 2008
Yi-Jiun Pan; Han-Chi Fang; Hui-Ching Yang; Tzu-Lung Lin; Pei-Fang Hsieh; Feng-Chiao Tsai; Yoav Keynan; Jin-Town Wang
ABSTRACT Community-acquired pyogenic liver abscess caused by Klebsiella pneumoniae is an emerging infectious disease. We explored the capsular polysaccharide synthesis (cps) regions of three non-K1, non-K2 K. pneumoniae strains, A1142, A7754, and A1517, from Taiwanese patients experiencing pyogenic liver abscess. Two of the strains, A1142 and A7754, belonged to capsular serotype K57, while the third belonged to a new capsular serotype, different from the previously reported 77 serotypes. Deletion and complementation experiments suggested that a unique K57 gene, a homologue of wzy, was essential for K57 capsular synthesis and confirmed that this gene cluster was a genetic coding region for K57. Compared to K1 and K2 strains, the three strains were all serum sensitive, suggesting that host factors might also be involved in the three patients. PCR using primers from specific genes for K57 was more sensitive and specific than traditional serotyping. The remaining strain, A1517, did not react to the antisera from any of the 77 serotypes, and none of the 77 reference strains reacted to the serum against this strain. Moreover, PCR analyses using various primer pairs from the serotype-specific open reading frames did not reveal cross-reactivity to any of the 77 reference strains, suggesting that this strain likely represents a new capsular type. We conclude that sequences from these two cps regions are very useful in detecting K57 and the new cps genotype.
Microbiology | 2011
Chun-Ru Hsu; Tzu-Lung Lin; You-Ci Chen; Huei-Chi Chou; Jin-Town Wang
Klebsiella pneumoniae community-acquired pyogenic liver abscess (PLA) is an emerging infectious disease. The rmpA gene (for regulator of mucoid phenotype A) has been reported to be associated with PLA in prevalence studies. NTUH-K2044, a K1 PLA isolate, carries three rmpA/A2 genes: two large-plasmid-carried genes (p-rmpA and p-rmpA2) and one chromosomal gene (c-rmpA). In this study, we re-examined the role of rmpA/A2 in PLA pathogenesis to clarify the relationship of rmpA/A2 and capsular serotype to virulence. Using isogenic gene deletion strains and complemented strains of NTUH-K2044, we demonstrated that only p-rmpA enhanced expression of capsular polysaccharide synthesis (cps) genes and capsule production. Nevertheless, the lethal dose and in vivo competitive index indicated that p-rmpA does not promote virulence in mice. The prevalence of these three rmpA/A2 and capsular types in 206 strains was investigated. This revealed a correlation of rmpA/A2 with six PLA-related capsular types (K1, K2, K5, K54, K57 and KN1). However, the correlation of rmpA/A2 with K1 strains from the West was less obvious than with the strains from Asia (17/22 vs 39/39, P = 0.0019). Among the three rmpA/A2 genes, p-rmpA was the most prevalent. Due to the strong correlation with PLA-related capsular types, p-rmpA could serve as a surrogate marker for PLA. We found an association of p-rmpA with three widely spaced loci in a large plasmid (30/32). Therefore, rmpA could be co-inherited together with virulence genes carried by this plasmid.
PLOS ONE | 2011
Meng-Chuan Wu; Tzu-Lung Lin; Pei-Fang Hsieh; Hui-Ching Yang; Jin-Town Wang
Background Community-acquired pyogenic liver abscess (PLA) complicated with meningitis and endophthalmitis caused by Klebsiella pneumoniae is an emerging infectious disease. To investigate the mechanisms and effects of biofilm formation of K. pneumoniae causing PLA, microtiter plate assays were used to determine the levels of biofilm formed by K. pneumoniae clinical isolates and to screen for biofilm-altered mutants from a transposon mutant library of a K. pneumoniae PLA-associated strain. Methodology/Principal Findings The biofilm formation of K. pneumoniae was examined by microtiter plate assay. Higher levels of biofilm formation were demonstrated by K. pneumoniae strains associated with PLA. A total of 23 biofilm-decreased mutants and 4 biofilm-increased mutants were identified. Among these mutants, a biofilm-decreased treC mutant displayed less mucoviscosity and produced less capsular polysaccharide (CPS), whereas a biofilm-increased sugE mutant displayed higher mucoviscosity and produced more CPS. The biofilm phenotypes of treC and sugE mutants also were confirmed by glass slide culture. Deletion of treC, which encodes trehalose-6-phosphate hydrolase, impaired bacterial trehalose utilization. Addition of glucose to the culture medium restored the capsule production and biofilm formation in the treC mutant. Transcriptional profile analysis suggested that the increase of CPS production in ΔsugE may reflect elevated cps gene expression (upregulated through rmpA) in combination with increased treC expression. In vivo competition assays demonstrated that the treC mutant strain was attenuated in competitiveness during intragastric infection in mice. Conclusions/Significance Genes important for biofilm formation by K. pneumoniae PLA strain were identified using an in vitro assay. Among the identified genes, treC and sugE affect biofilm formation by modulating CPS production. The importance of treC in gastrointestinal tract colonization suggests that biofilm formation contributes to the establishment and persistence of K. pneumoniae infection.
PLOS ONE | 2013
Yi-Jiun Pan; Tzu-Lung Lin; Yen-Hua Chen; Chun-Ru Hsu; Pei-Fang Hsieh; Meng-Chuan Wu; Jin-Town Wang
Capsule is an important virulence factor in bacteria. A total of 78 capsular types have been identified in Klebsiella pneumoniae. However, there are limitations in current typing methods. We report here the development of a new genotyping method based on amplification of the variable regions of the wzc gene. Fragments corresponding to the variable region of wzc were amplified and sequenced from 76 documented capsular types of reference or clinical strains. The remaining two capsular types (reference strains K15 and K50) lacked amplifiable wzc genes and were proven to be acapsular. Strains with the same capsular type exhibited ≧94% DNA sequence identity across the variable region (CD1-VR2-CD2) of wzc. Strains with distinct K types exhibited <80% DNA sequence identity across this region, with the exception of three pairs of strains: K22/K37, K9/K45, and K52/K79. Strains K22 and K37 shared identical capsular polysaccharide synthesis (cps) genes except for one gene with a difference at a single base which resulted in frameshift mutation. The wzc sequences of K9 and K45 exhibited high DNA sequence similarity but possessed different genes in their cps clusters. K52 and K79 exhibited 89% wzc DNA sequence identity but were readily distinguished from each other at the DNA level; in contrast, strains with the same capsular type as K52 exhibited 100% wzc sequence identity. A total of 29 strains from patients with bacteremia were typed by the wzc system. wzc DNA sequences confirmed the documented capsular type for twenty-eight of these clinical isolates; the remaining strain likely represents a new capsular type. Thus, the wzc genotyping system is a simple and useful method for capsular typing of K. pneumoniae.
PLOS ONE | 2012
Pei-Fang Hsieh; Tzu-Lung Lin; Feng-Ling Yang; Meng-Chuan Wu; Yi-Jiun Pan; Shih-Hsiung Wu; Jin-Town Wang
Klebsiella pneumoniae is the common cause of a global emerging infectious disease, community-acquired pyogenic liver abscess (PLA). Capsular polysaccharide (CPS) and lipopolysaccharide (LPS) are critical for this microorganisms ability to spread through the blood and to cause sepsis. While CPS type K1 is an important virulence factor in K. pneumoniae causing PLA, the role of LPS in PLA is not clear. Here, we characterize the role of LPS O antigen in the pathogenesis of K. pneumoniae causing PLA. NTUH-K2044 is a LPS O1 clinical strain; the presence of the O antigen was shown via the presence of 1,3-galactan in the LPS, and of sequences that align with the wb gene cluster, known to produce O-antigen. Serologic analysis of K. pneumoniae clinical isolates demonstrated that the O1 serotype was more prevalent in PLA strains than that in non-tissue-invasive strains (38/42 vs. 9/32, P<0.0001). O1 serotype isolates had a higher frequency of serum resistance, and mutation of the O1 antigen changed serum resistance in K. pneumoniae. A PLA-causing strain of CPS capsular type K2 and LPS serotype O1 (i.e., O1:K2 PLA strain) deleted for the O1 synthesizing genes was profoundly attenuated in virulence, as demonstrated in separate mouse models of septicemia and liver abscess. Immunization of mice with the K2044 magA-mutant (K1 − O1) against LPS O1 provided protection against infection with an O1:K2 PLA strain, but not against infection with an O1:K1 PLA strain. Our findings indicate that the O1 antigen of PLA-associated K. pneumoniae contributes to virulence by conveying resistance to serum killing, promoting bacterial dissemination to and colonization of internal organs after the onset of bacteremia, and could be a useful vaccine candidate against infection by an O1:K2 PLA strain.
Antimicrobial Agents and Chemotherapy | 2015
Yi-Hsiang Cheng; Tzu-Lung Lin; Yi-Jiun Pan; Yu-Ping Wang; Yi-Tsung Lin; Jin-Town Wang
ABSTRACT Colistin is one of the antibiotics of last resort for the treatment of carbapenem-resistant Klebsiella pneumoniae infection. This study showed that capsular type K64 (50%) and ST11 (53.9%) are the prevalent capsular and sequence types in the colistin-resistant strains in Taiwan. The interruption of transcripts (38.5%) and amino acid mutation (15.4%) in mgrB are the major mechanisms contributing to colistin resistance. In addition, novel single amino acid changes in MgrB (Stop48Tyr) and PhoQ (Leu26Pro) were observed to contribute to colistin resistance.
PLOS ONE | 2013
Chun-Ru Hsu; Tzu-Lung Lin; Yi-Jiun Pan; Pei-Fang Hsieh; Jin-Town Wang
Background Klebsiella pneumoniae is one of the major pathogens causing hospital-acquired multidrug-resistant infections. The capsular polysaccharide (CPS) is an important virulence factor of K. pneumoniae. With 78 capsular types discovered thus far, an association between capsular type and the pathogenicity of K. pneumoniae has been observed. Methodology/Principal Findings To investigate an initially non-typeable K. pneumoniae UTI isolate NTUH-K1790N, the cps gene region was sequenced. By NTUH-K1790N cps-PCR genotyping, serotyping and determination using a newly isolated capsular type-specific bacteriophage, we found that NTUH-K1790N and three other isolates Ca0507, Ca0421 and C1975 possessed a new capsular type, which we named KN2. Analysis of a KN2 CPS− mutant confirmed the role of capsule as the target recognized by the antiserum and the phage. A newly described lytic phage specific for KN2 K. pneumoniae, named 0507-KN2-1, was isolated and characterized using transmission electron microscopy. Whole-genome sequencing of 0507-KN2-1 revealed a 159 991 bp double-stranded DNA genome with a G+C content of 46.7% and at least 154 open reading frames. Based on its morphological and genomic characteristics, 0507-KN2-1 was classified as a member of the Myoviridae phage family. Further analysis of this phage revealed a 3738-bp gene encoding a putative polysaccharide depolymerase. A recombinant form of this protein was produced and assayed to confirm its enzymatic activity and specificity to KN2 capsular polysaccharides. KN2 K. pneumoniae strains exhibited greater sensitivity to this depolymerase than these did to the cognate phage, as determined by spot analysis. Conclusions/Significance Here we report that a group of clinical strains possess a novel Klebsiella capsular type. We identified a KN2-specific phage and its polysaccharide depolymerase, which could be used for efficient capsular typing. The lytic phage and depolymerase also have potential as alternative therapeutic agents to antibiotics for treating K. pneumoniae infections, especially against antibiotic-resistant strains.
Angewandte Chemie | 2013
Chia-Hung Wang; Shiou-Ting Li; Tzu-Lung Lin; Yang-Yu Cheng; Tsung‐Hsien Sun; Jin-Town Wang; Ting-Jen R. Cheng; Kwok-Kong Tony Mong; Chi-Huey Wong; Chung-Yi Wu
Carbohydrate VaccineC.-H. Wang, S.-T. Li, T.-L. Lin, Y.-Y. Cheng,T.-H. Sun, J.-T. Wang, T.-J. R. Cheng,K. K. T. Mong, C.-H. Wong,C.-Y. Wu* &&&&—&&&&Synthesis of Neisseria meningitidisSerogroup W135 CapsularOligosaccharides for ImmunogenicityComparison and Vaccine DevelopmentSweetening the deal: N. meningitidisserogroup W135 capsular oligosacchar-ides were synthesized in lengths fromdisaccharides to decasaccharides. Serafrom mice immunized with these oligo-saccharide–protein conjugates wereexamined by a glycan microarray (seepicture) and bactericidal assay for anti-body specificity and the ability to killbacteria.