Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tzu-Pei Chang is active.

Publication


Featured researches published by Tzu-Pei Chang.


Molecular Cancer Research | 2011

Bortezomib Induces Nuclear Translocation of IκBα Resulting in Gene-Specific Suppression of NF-κB–Dependent Transcription and Induction of Apoptosis in CTCL

Ashish Juvekar; Subrata Manna; Sitharam Ramaswami; Tzu-Pei Chang; Hai-Yen Vu; Chandra C. Ghosh; Mahmut Y Celiker; Ivana Vancurova

Cutaneous T-cell lymphoma (CTCL) is characterized by constitutive activation of nuclear factor κB (NF-κB), which plays a crucial role in the survival of CTCL cells and their resistance to apoptosis. NF-κB activity in CTCL is inhibited by the proteasome inhibitor bortezomib; however, the mechanisms remained unknown. In this study, we investigated mechanisms by which bortezomib suppresses NF-κB activity in CTCL Hut-78 cells. We demonstrate that bortezomib and MG132 suppress NF-κB activity in Hut-78 cells by a novel mechanism that consists of inducing nuclear translocation and accumulation of IκBα (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha), which then associates with NF-κB p65 and p50 in the nucleus and inhibits NF-κB DNA binding activity. Surprisingly, however, while expression of NF-κB–dependent antiapoptotic genes cIAP1 and cIAP2 is inhibited by bortezomib, expression of Bcl-2 is not suppressed. Chromatin immunoprecipitation indicated that cIAP1 and cIAP2 promoters are occupied by NF-κB p65/50 heterodimers, whereas Bcl-2 promoter is occupied predominantly by p50/50 homodimers. Collectively, our data reveal a novel mechanism of bortezomib function in CTCL and suggest that the inhibition of NF-κB–dependent gene expression by bortezomib is gene specific and depends on the subunit composition of NF-κB dimers recruited to NF-κB–responsive promoters. Mol Cancer Res; 9(2); 183–94. ©2011 AACR.


Journal of Biological Chemistry | 2014

Proteasome inhibition increases recruitment of IκB kinase β (IKKβ), S536P-p65, and transcription factor EGR1 to interleukin-8 (IL-8) promoter, resulting in increased IL-8 production in ovarian cancer cells.

Bipradeb Singha; Himavanth R. Gatla; Subrata Manna; Tzu-Pei Chang; Shannon Sanacora; Vladimir Poltoratsky; Ales Vancura; Ivana Vancurova

Background: IL-8 promotes angiogenesis and metastasis in ovarian cancer. Results: Proteasome inhibition induces specific recruitment of IKKβ, EGR-1, and S536P-p65 to the IL-8 promoter. Conclusion: The increased IKKβ, EGR-1, and S536P-p65 recruitment results in the increased IL-8 expression and release in ovarian cancer cells. Significance: The BZ-increased IL-8 release may be responsible for the BZ-limited effectiveness in ovarian cancer treatment. Proinflammatory and pro-angiogenic chemokine interleukin-8 (IL-8, CXCL8) contributes to ovarian cancer progression through its induction of tumor cell proliferation, survival, angiogenesis, and metastasis. Proteasome inhibition by bortezomib, which has been used as a frontline therapy in multiple myeloma, has shown only limited effectiveness in ovarian cancer and other solid tumors. However, the responsible mechanisms remain elusive. Here, we show that proteasome inhibition dramatically increases the IL-8 expression and release in ovarian cancer cells. The responsible mechanism involves an increased nuclear accumulation of IκB kinase β (IKKβ) and an increased recruitment of the nuclear IKKβ, p65-phosphorylated at Ser-536, and the transcription factor early growth response-1 (EGR-1) to the endogenous IL-8 promoter. Coimmunoprecipitation studies identified the nuclear EGR-1 associated with IKKβ and with p65, with preferential binding to S536P-p65. Both IKKβ activity and EGR-1 expression are required for the increased IL-8 expression induced by proteasome inhibition in ovarian cancer cells. Interestingly, in multiple myeloma cells the IL-8 release is not increased by bortezomib. Together, these data indicate that the increased IL-8 release may represent one of the underlying mechanisms responsible for the decreased effectiveness of proteasome inhibition in ovarian cancer treatment and identify IKKβ and EGR-1 as potential new targets in ovarian cancer combination therapies.


Journal of Immunology | 2013

Proteasome Inhibition by Bortezomib Increases IL-8 Expression in Androgen-Independent Prostate Cancer Cells: The Role of IKKα

Subrata Manna; Bipradeb Singha; Sai Phyo; Himavanth R. Gatla; Tzu-Pei Chang; Shannon Sanacora; Sitharam Ramaswami; Ivana Vancurova

Expression of the proinflammatory and proangiogenic chemokine IL-8, which is regulated at the transcriptional level by NF-κB, is constitutively increased in androgen-independent metastatic prostate cancer and correlates with poor prognosis. Inhibition of NF-κB–dependent transcription was used as an anticancer strategy for the development of the first clinically approved 26S proteasome inhibitor, bortezomib (BZ). Even though BZ has shown remarkable antitumor activity in hematological malignancies, it has been less effective in prostate cancer and other solid tumors; however, the mechanisms have not been fully understood. In this article, we report that proteasome inhibition by BZ unexpectedly increases IL-8 expression in androgen-independent prostate cancer PC3 and DU145 cells, whereas expression of other NF-κB–regulated genes is inhibited or unchanged. The BZ-increased IL-8 expression is associated with increased in vitro p65 NF-κB DNA binding activity and p65 recruitment to the endogenous IL-8 promoter. In addition, proteasome inhibition induces a nuclear accumulation of IκB kinase (IKK)α, and inhibition of IKKα enzymatic activity significantly attenuates the BZ-induced p65 recruitment to IL-8 promoter and IL-8 expression, demonstrating that the induced IL-8 expression is mediated, at least partly, by IKKα. Together, these data provide the first evidence, to our knowledge, for the gene-specific increase of IL-8 expression by proteasome inhibition in prostate cancer cells and suggest that targeting both IKKα and the proteasome may increase BZ effectiveness in treatment of androgen-independent prostate cancer.


Journal of Immunology | 2015

Bortezomib Inhibits Expression of TGF-β1, IL-10, and CXCR4, Resulting in Decreased Survival and Migration of Cutaneous T Cell Lymphoma Cells

Tzu-Pei Chang; Vladimir Poltoratsky; Ivana Vancurova

Increased expression of the immunosuppressive cytokines, TGF-β1 and IL-10, is a hallmark of the advanced stages of cutaneous T cell lymphoma (CTCL), where it has been associated with suppressed immunity, increased susceptibility to infections, and diminished antitumor responses. Yet, little is known about the transcriptional regulation of TGF-β1 and IL-10 in CTCL, and about their function in regulating the CTCL cell responses. In this article, we show that TGF-β1 and IL-10 expression in CTCL cells is regulated by NF-κB and suppressed by bortezomib (BZ), which has shown promising results in the treatment of CTCL. However, although the TGF-β1 expression is IκBα dependent and is regulated by the canonical pathway, the IL-10 expression is IκBα independent, and its inhibition by BZ is associated with increased promoter recruitment of p52 that characterizes the noncanonical pathway. TGF-β1 suppression decreases CTCL cell viability and increases apoptosis, and adding exogenous TGF-β1 increases viability of BZ-treated CTCL cells, indicating TGF-β1 prosurvival function in CTCL cells. In addition, TGF-β1 suppression increases expression of the proinflammatory cytokines IL-8 and IL-17 in CTCL cells, suggesting that TGF-β1 also regulates the IL-8 and IL-17 expression. Importantly, our results demonstrate that BZ inhibits expression of the chemokine receptor CXCR4 in CTCL cells, resulting in their decreased migration, and that the CTCL cell migration is mediated by TGF-β1. These findings provide the first insights into the BZ-regulated TGF-β1 and IL-10 expression in CTCL cells, and indicate that TGF-β1 has a key role in regulating CTCL survival, inflammatory gene expression, and migration.


Biochimica et Biophysica Acta | 2014

Bcl3 regulates pro-survival and pro-inflammatory gene expression in cutaneous T-cell lymphoma

Tzu-Pei Chang; Ivana Vancurova

The advanced stages of cutaneous T cell lymphoma (CTCL) are characterized not only by decreased levels of pro-inflammatory cytokines, resulting in high susceptibility to infections, but also by high constitutive activity of NFκB, which promotes cell survival and resistance to apoptosis. The increased expression of the proto-oncogene Bcl3 belonging to IκB family is associated with the pathogenesis of the different types of human cancer, yet, the function and regulation of Bcl3 in CTCL have not been studied. Here, we show that Bcl3 is highly expressed in CTCL Hut-78 and HH cells. The suppression of Bcl3 levels decreases the expression of the pro-survival genes cIAP1 and cIAP2, reduces cell viability, and increases CTCL apoptosis. Interestingly, Bcl3 suppression concomitantly increases expression and the release of the pro-inflammatory cytokines IL-8 and IL-17 in CTCL cells. Chromatin immunoprecipitation studies show that Bcl3 regulates cIAP1, cIAP2, IL-8 and IL-17 gene expression through direct binding to their promoters. Bcl3 expression is regulated by bortezomib (BZ)-mediated proteasome inhibition, and BZ inhibits Bcl3 recruitment to its target promoters, resulting in decreased expression of cIAP1 and cIAP2, but increased expression of IL-8 and IL-17. The Bcl3 expression is regulated through NFκB subunit exchange on Bcl3 promoter. In untreated cells, the Bcl3 promoter is occupied predominantly by p65/p50 heterodimers, inducing Bcl3 expression; however, in BZ-treated cells, the p65/50 heterodimers are replaced by p52 subunits, resulting in Bcl3 transcriptional repression. These data provide the first insights into the function and regulation of Bcl3 in CTCL, and indicate that Bcl3 has an important pro-survival and immunosuppressive role in these cells.


Methods of Molecular Biology | 2014

Analysis of TGFβ1 and IL-10 transcriptional regulation in CTCL cells by chromatin immunoprecipitation.

Tzu-Pei Chang; Myra Kim; Ivana Vancurova

The immunosuppressive cytokines transforming growth factor β1 (TGFβ1) and interleukin-10 (IL-10) regulate a variety of biological processes including differentiation, proliferation, tissue repair, tumorigenesis, inflammation, and host defense. Aberrant expression of TGFβ1 and IL-10 has been associated with many types of autoimmune and inflammatory disorders, as well as with many types of cancer and leukemia. Patients with cutaneous T cell lymphoma (CTCL) have high levels of malignant CD4+ T cells expressing IL-10 and TGFβ1 that suppress the immune system and diminish the antitumor responses. The transcriptional regulation of TGFβ1 and IL-10 expression is orchestrated by several transcription factors, including NFκB. However, while the transcriptional regulation of pro-inflammatory and anti-apoptotic genes by NFκB has been studied extensively, much less is known about the NFκB regulation of immunosuppressive genes. In this chapter, we describe a protocol that uses chromatin immunoprecipitation (ChIP) to analyze the transcriptional regulation of TGFβ1 and IL-10 by measuring recruitment of NFκB p65, p50, c-Rel, Rel-B, and p52 subunits to TGFβ1 and IL-10 promoters in human CTCL Hut-78 cells.


Biochemical and Biophysical Research Communications | 2015

Anticancer Drug Bortezomib Increases Interleukin-8 Expression in Human Monocytes

Shannon Sanacora; Joaquin Urdinez; Tzu-Pei Chang; Ivana Vancurova

Bortezomib (BZ) is the first clinically approved proteasome inhibitor that has shown remarkable anticancer activity in patients with hematological malignancies. However, many patients relapse and develop resistance; yet, the molecular mechanisms of BZ resistance are not fully understood. We have recently shown that in solid tumors, BZ unexpectedly increases expression of the pro-inflammatory and pro-angiogenic chemokine interleukin-8 (IL-8), while it inhibits expression of other NFκB-regulated genes. Since monocytes and macrophages are major producers of IL-8, the goal of this study was to test the hypothesis that BZ increases the IL-8 expression in human monocytes and macrophages. Here, we show that BZ dramatically increases the IL-8 expression in lipopolysaccharide (LPS)-stimulated U937 macrophages as well as in unstimulated U937 monocytes and peripheral blood mononuclear cells, while it inhibits expression of IL-6, IL-1 and tumor necrosis factor-α. In addition, our results show that the underlying mechanisms involve p38 mitogen-activated protein kinase, which is required for the BZ-induced IL-8 expression. Together, these data suggest that the BZ-increased IL-8 expression in monocytes and macrophages may represent one of the mechanisms responsible for the BZ resistance and indicate that targeting the p38-mediated IL-8 expression could enhance the BZ effectiveness in cancer treatment.


Methods of Molecular Biology | 2014

Chromatin Immunoprecipitation Analysis of Bortezomib-Mediated Inhibition of NFκB Recruitment to IL-1β and TNFα Gene Promoters in Human Macrophages

Shannon Sanacora; Tzu-Pei Chang; Ivana Vancurova

Interleukin-1β (IL-1) and tumor necrosis factor-α (TNF) are important pro-inflammatory cytokines involved in the mediation of the immune response, inflammation, tissue repair, and tumor progression. Regulation of IL-1 and TNF expression is mediated at the level of transcription by the transcription factor NFκB. Inhibition of NFκB activity by the proteasome inhibitor bortezomib (BZ) has been used as a frontline therapy in multiple myeloma and other hematological malignancies. In this chapter, we describe a protocol that uses chromatin immunoprecipitation (ChIP) to analyze the NFκB recruitment to endogenous IL-1 and TNF promoters in BZ-treated human macrophages. Corresponding to the BZ-suppressed mRNA levels of IL-1 and TNF, we show that BZ inhibits p65 NFκB recruitment to IL-1 and TNF promoters. This study specifically uses U937 macrophages, but the protocol could be easily modified to analyze the regulation of NFκB recruitment in other cell types.


Methods of Molecular Biology | 2012

Electrophoretic mobility shift assay analysis of NFκB transcriptional regulation by nuclear IκBα.

Ashish Juvekar; Sitharam Ramaswami; Subrata Manna; Tzu-Pei Chang; Adeel Zubair; Ivana Vancurova

Transcription factor NFκB is a key regulator of genes involved in immune and inflammatory responses, as well as genes regulating cell proliferation and survival. In addition to many inflammatory disorders, NFκB is constitutively activated in a variety of human cancers and leukemia. Thus, inhibition of NFκB DNA binding activity represents an important therapeutic approach for disorders characterized by high levels of constitutive NFκB activity. We have previously shown that NFκB DNA binding activity is suppressed by the nuclear translocation and accumulation of IκBα, which is induced by inhibition of the 26S proteasome. In this chapter, we describe a protocol that uses small inhibitory RNA (si RNA) interference followed by electrophoretic mobility shift assay (EMSA) to analyze the regulation of NFκB DNA binding by nuclear IκBα induced by the proteasome inhibitor MG132. Using this protocol, we show that in human leukemia Hut-78 cells that exhibit high levels of NFκB DNA binding activity, MG132 induces nuclear translocation and accumulation of IκBα, which then specifically inhibits NFκB DNA binding. This protocol uses human leukemia Hut-78 cells; however, it can be easily adapted for other cells exhibiting high levels of constitutive NFκB DNA binding.


American Journal of Cancer Research | 2013

NFκB function and regulation in cutaneous T-cell lymphoma.

Tzu-Pei Chang; Ivana Vancurova

Collaboration


Dive into the Tzu-Pei Chang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge