Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tzu-Pin Lu is active.

Publication


Featured researches published by Tzu-Pin Lu.


PLOS ONE | 2012

miRSystem: An Integrated System for Characterizing Enriched Functions and Pathways of MicroRNA Targets

Tzu-Pin Lu; Chien-Yueh Lee; Mong-Hsun Tsai; Yu-Chiao Chiu; Chuhsing Kate Hsiao; Liang-Chuan Lai; Eric Y. Chuang

Background Many prediction tools for microRNA (miRNA) targets have been developed, but inconsistent predictions were observed across multiple algorithms, which can make further analysis difficult. Moreover, the nomenclature of human miRNAs changes rapidly. To address these issues, we developed a web-based system, miRSystem, for converting queried miRNAs to the latest annotation and predicting the function of miRNA by integrating miRNA target gene prediction and function/pathway analyses. Results First, queried miRNA IDs were converted to the latest annotated version to prevent potential conflicts resulting from multiple aliases. Next, by combining seven algorithms and two validated databases, potential gene targets of miRNAs and their functions were predicted based on the consistency across independent algorithms and observed/expected ratios. Lastly, five pathway databases were included to characterize the enriched pathways of target genes through bootstrap approaches. Based on the enriched pathways of target genes, the functions of queried miRNAs could be predicted. Conclusions MiRSystem is a user-friendly tool for predicting the target genes and their associated pathways for many miRNAs simultaneously. The web server and the documentation are freely available at http://mirsystem.cgm.ntu.edu.tw/.


Cancer Epidemiology, Biomarkers & Prevention | 2010

Identification of a Novel Biomarker, SEMA5A, for Non–Small Cell Lung Carcinoma in Nonsmoking Women

Tzu-Pin Lu; Mong-Hsun Tsai; Jang-Ming Lee; C. Hsu; Pei-Chun Chen; Chung-Wu Lin; Jin-Yuan Shih; Pan-Chyr Yang; Chuhsing Kate Hsiao; Liang-Chuan Lai; Eric Y. Chuang

Background: Although cigarette smoking is the major risk factor for lung cancer, only 7% of female lung cancer patients in Taiwan have a history of smoking. The genetic mechanisms of carcinogenesis in nonsmokers are unclear, but semaphorins have been suggested to play a role as lung tumor suppressors. This report is a comprehensive analysis of the molecular signature of nonsmoking female lung cancer patients in Taiwan, with a particular focus on the semaphorin gene family. Methods: Sixty pairs of tumor and adjacent normal lung tissue specimens were analyzed by using Affymetrix U133plus2.0 expression arrays. Differentially expressed genes in tumor tissues were identified by a paired t test and validated by reverse transcriptase-PCR and immunohistochemistry. Functional analysis was conducted by using Ingenuity Pathway Analysis as well as gene set enrichment analysis and sigPathway algorithms. Kaplan-Meier survival analyses were used to evaluate the association of SEMA5A expression and clinical outcome. Results: We identified 687 differentially expressed genes in non–small cell lung carcinoma (NSCLC). Many of these genes, most notably the semaphorin family, were participants in the axon guidance signaling pathway. The downregulation of SEMA5A in tumor tissue, both at the transcriptional and translational levels, was associated with poor survival among nonsmoking women with NSCLC. Conclusions: In summary, several semaphorin gene family members were identified as potential therapeutic targets, and SEMA5A may be useful as a prognostic biomarker for NSCLC, which may also be gender specific in Taiwanese patients. Impact: A novel biomarker for NSCLC is identified. Cancer Epidemiol Biomarkers Prev; 19(10); 2590–7. ©2010 AACR.


Clinical & Experimental Allergy | 2013

Prenatal smoke exposure, DNA methylation, and childhood atopic dermatitis

I-Jen Wang; Szu-Ying Chen; Tzu-Pin Lu; Eric Y. Chuang; Pau-Chung Chen

The biological mechanisms of how prenatal smoke exposure leading to atopic disorders remain to be addressed. Whether prenatal smoke exposure affects DNA methylation leading to atopic disorders is not clear.


PLOS ONE | 2011

Integrated Analyses of Copy Number Variations and Gene Expression in Lung Adenocarcinoma

Tzu-Pin Lu; Liang-Chuan Lai; Mong-Hsun Tsai; Pei-Chun Chen; C. Hsu; Jang-Ming Lee; Chuhsing Kate Hsiao; Eric Y. Chuang

Numerous efforts have been made to elucidate the etiology and improve the treatment of lung cancer, but the overall five-year survival rate is still only 15%. Identification of prognostic biomarkers for lung cancer using gene expression microarrays poses a major challenge in that very few overlapping genes have been reported among different studies. To address this issue, we have performed concurrent genome-wide analyses of copy number variation and gene expression to identify genes reproducibly associated with tumorigenesis and survival in non-smoking female lung adenocarcinoma. The genomic landscape of frequent copy number variable regions (CNVRs) in at least 30% of samples was revealed, and their aberration patterns were highly similar to several studies reported previously. Further statistical analysis for genes located in the CNVRs identified 475 genes differentially expressed between tumor and normal tissues (p<10−5). We demonstrated the reproducibility of these genes in another lung cancer study (p = 0.0034, Fishers exact test), and showed the concordance between copy number variations and gene expression changes by elevated Pearson correlation coefficients. Pathway analysis revealed two major dysregulated functions in lung tumorigenesis: survival regulation via AKT signaling and cytoskeleton reorganization. Further validation of these enriched pathways using three independent cohorts demonstrated effective prediction of survival. In conclusion, by integrating gene expression profiles and copy number variations, we identified genes/pathways that may serve as prognostic biomarkers for lung tumorigenesis.


Cancer Research | 2014

ADAM9 promotes lung cancer metastases to brain by a plasminogen activator-based pathway.

Chen Yuan Lin; Hung Jen Chen; Cheng Chung Huang; Liang-Chuan Lai; Tzu-Pin Lu; Guan Chin Tseng; Ting Ting Kuo; Qian Yu Kuok; Jennifer L. Hsu; Shian Ying Sung; Mien Chie Hung; Yuh Pyng Sher

The transmembrane cell adhesion protein ADAM9 has been implicated in cancer cell migration and lung cancer metastasis to the brain, but the underpinning mechanisms are unclear and clinical support has been lacking. Here, we demonstrate that ADAM9 enhances the ability of tissue plasminogen activator (tPA) to cleave and stimulate the function of the promigratory protein CDCP1 to promote lung metastasis. Blocking this mechanism of cancer cell migration prolonged survival in tumor-bearing mice and cooperated with dexamethasone and dasatinib (a dual Src/Abl kinase inhibitor) treatment to enhance cytotoxic treatment. In clinical specimens, high levels of ADAM9 and CDCP1 correlated with poor prognosis and high risk of mortality in patients with lung cancer. Moreover, ADAM9 levels in brain metastases derived from lung tumors were relatively higher than the levels observed in primary lung tumors. Our results show how ADAM9 regulates lung cancer metastasis to the brain by facilitating the tPA-mediated cleavage of CDCP1, with potential implications to target this network as a strategy to prevent or treat brain metastatic disease.


Scientific Reports | 2015

Disease-Targeted Sequencing of Ion Channel Genes identifies de novo mutations in Patients with Non-Familial Brugada Syndrome

Jyh-Ming Jimmy Juang; Tzu-Pin Lu; Liang-Chuan Lai; Chia-Chuan Ho; Yen-Bin Liu; Chia-Ti Tsai; Lian-Yu Lin; Chih-Chieh Yu; Wen-Jone Chen; Fu-Tien Chiang; Shih-Fan Sherri Yeh; Ling-Ping Lai; Eric Y. Chuang; Jiunn-Lee Lin

Brugada syndrome (BrS) is one of the ion channelopathies associated with sudden cardiac death (SCD). The most common BrS-associated gene (SCN5A) only accounts for approximately 20–25% of BrS patients. This study aims to identify novel mutations across human ion channels in non-familial BrS patients without SCN5A variants through disease-targeted sequencing. We performed disease-targeted multi-gene sequencing across 133 human ion channel genes and 12 reported BrS-associated genes in 15 unrelated, non-familial BrS patients without SCN5A variants. Candidate variants were validated by mass spectrometry and Sanger sequencing. Five de novo mutations were identified in four genes (SCNN1A, KCNJ16, KCNB2, and KCNT1) in three BrS patients (20%). Two of the three patients presented SCD and one had syncope. Interestingly, the two patients presented with SCD had compound mutations (SCNN1A:Arg350Gln and KCNB2:Glu522Lys; SCNN1A:Arg597* and KCNJ16:Ser261Gly). Importantly, two SCNN1A mutations were identified from different families. The KCNT1:Arg1106Gln mutation was identified in a patient with syncope. Bioinformatics algorithms predicted severe functional interruptions in these four mutation loci, suggesting their pivotal roles in BrS. This study identified four novel BrS-associated genes and indicated the effectiveness of this disease-targeted sequencing across ion channel genes for non-familial BrS patients without SCN5A variants.


Translational cancer research | 2014

Biomarker adaptive designs in clinical trials

James J. Chen; Tzu-Pin Lu; Dung-Tsa Chen; Sue-Jane Wang

Predictive biomarkers are used to develop (binary) classifiers to identify patients as either good or poor candidates for clinical decision to optimize treatment selection. Ideally, these candidate biomarkers have been well studied in the phase II developmental stage, the performance characteristics of the classifier are well established in one or more retrospective validation, and the assay and predictive performance are reproducible and robust experimentally and analytically. However, completely phase II validated biomarkers for uses in phase III trial are often unavailable. Adaptive signature design (ASD) combines the biomarker identification and classifier development to the selection of candidate patients and a statistical test for treatment effect on the selected patient subgroup for phase III clinical trials. Biomarker-adaptive designs identify the most suitable target subpopulations, based on clinical observations or known biomarkers, and evaluate the effectiveness of the treatment on that subpopulation in a statistically valid manner. This review is concerned with statistical aspects in the biomarker adaptive design for randomized clinical trials. Statistical issues include the interaction test to identify predictive biomarkers, subgroup analysis, multiple testing and false discovery rate (FDR), classification of imbalanced class size data, sample size and power, and validation of the classification model.


PLOS ONE | 2011

Down-regulation of NDRG1 promotes migration of cancer cells during reoxygenation

Liang-Chuan Lai; Yi Yu Su; Kuo Chih Chen; Mong-Hsun Tsai; Yuh Pyng Sher; Tzu-Pin Lu; Chien Yueh Lee; Eric Y. Chuang

One characteristic of tumor microenvironment is oxygen fluctuation, which results from hyper-proliferation and abnormal metabolism of tumor cells as well as disorganized neo-vasculature. Reoxygenation of tumors can induce oxidative stress, which leads to DNA damage and genomic instability. Although the cellular responses to hypoxia are well known, little is known about the dynamic response upon reoxygenation. In order to investigate the transcriptional responses of tumor adaptation to reoxygenation, breast cancer MCF-7 cells were cultured under 0.5% oxygen for 24 h followed by 24 h of reoxygenation in normoxia. Cells were harvested at 0, 1, 4, 8, 12, and 24 h during reoxygenation. The transcriptional profile of MCF-7 cells upon reoxygenation was examined using Illumina Human-6 v3 BeadChips. We identified 127 differentially expressed genes, of which 53.1% were up-regulated and 46.9% were down-regulated upon reoxygenation. Pathway analysis revealed that the HIF-1-alpha transcription factor network and validated targets of C-MYC transcriptional activation were significantly enriched in these differentially expressed genes. Among these genes, a subset of interest genes was further validated by quantitative reverse-transcription PCR. In particular, human N-MYC down-regulated gene 1 (NDRG1) was highly suppressed upon reoxygenation. NDRG1 is associated with a variety of stress and cell growth-regulatory conditions. To determine whether NDRG1 plays a role in reoxygenation, NDRG1 protein was overexpressed in MCF-7 cells. Upon reoxygenation, overexpression of NDRG1 significantly inhibited cell migration. Our results revealed the dynamic nature of gene expression in MCF-7 cells upon reoxygenation and demonstrated that NDRG1 is involved in tumor adaptation to reoxygenation.


International Journal of Radiation Oncology Biology Physics | 2010

Distinct signaling pathways after higher or lower doses of radiation in three closely related human lymphoblast cell lines.

Tzu-Pin Lu; Liang-Chuan Lai; Be-I. Lin; Li-Han Chen; Tzu-Hung Hsiao; Howard L. Liber; John A. Cook; James B. Mitchell; Mong-Hsun Tsai; Eric Y. Chuang

PURPOSE The tumor suppressor p53 plays an essential role in cellular responses to DNA damage caused by ionizing radiation; therefore, this study aims to further explore the role that p53 plays at different doses of radiation. MATERIALS AND METHODS The global cellular responses to higher-dose (10 Gy) and lower dose (iso-survival dose, i.e., the respective D0 levels) radiation were analyzed using microarrays in three human lymphoblast cell lines with different p53 status: TK6 (wild-type p53), NH32 (p53-null), and WTK1 (mutant p53). Total RNAs were extracted from cells harvested at 0, 1, 3, 6, 9, and 24 h after higher and lower dose radiation exposures. Template-based clustering, hierarchical clustering, and principle component analysis were applied to examine the transcriptional profiles. RESULTS Differential expression profiles between 10 Gy and iso-survival radiation in cells with different p53 status were observed. Moreover, distinct gene expression patterns were exhibited among these three cells after 10 Gy radiation treatment, but similar transcriptional responses were observed in TK6 and NH32 cells treated with iso-survival radiation. CONCLUSIONS After 10 Gy radiation exposure, the p53 signaling pathway played an important role in TK6, whereas the NFkB signaling pathway appeared to replace the role of p53 in WTK1. In contrast, after iso-survival radiation treatment, E2F4 seemed to play a dominant role independent of p53 status. This study dissected the impacts of p53, NFkB and E2F4 in response to higher or lower doses of gamma-irradiation.


Molecular Psychiatry | 2016

A splicing-regulatory polymorphism in DRD2 disrupts ZRANB2 binding, impairs cognitive functioning and increases risk for schizophrenia in six Han Chinese samples

Ori S. Cohen; Thomas W. Weickert; Jay L. Hess; L M Paish; Sarah Y. Mccoy; Debora A. Rothmond; Cherrie Galletly; Dennis Liu; Danielle Weinberg; Xu-Feng Huang; Q Xu; Yu-cun Shen; D Zhang; W Yue; Junqiang Yan; L-Y Wang; Tzu-Pin Lu; Lin He; Yishan Shi; Min Nina Xu; Ronglin Che; Wei Tang; C-H Chen; W-H Chang; H-G Hwu; C-M Liu; Y-L Liu; C-C Wen; Cs-J Fann; C-C Chang

The rs1076560 polymorphism of DRD2 (encoding dopamine receptor D2) is associated with alternative splicing and cognitive functioning; however, a mechanistic relationship to schizophrenia has not been shown. Here, we demonstrate that rs1076560(T) imparts a small but reliable risk for schizophrenia in a sample of 616 affected families and five independent replication samples totaling 4017 affected and 4704 unaffected individuals (odds ratio=1.1; P=0.004). rs1076560(T) was associated with impaired verbal fluency and comprehension in schizophrenia but improved performance among healthy comparison subjects. rs1076560(T) also associated with lower D2 short isoform expression in postmortem brain. rs1076560(T) disrupted a binding site for the splicing factor ZRANB2, diminished binding affinity between DRD2 pre-mRNA and ZRANB2 and abolished the ability of ZRANB2 to modulate short:long isoform-expression ratios of DRD2 minigenes in cell culture. Collectively, this work implicates rs1076560(T) as one possible risk factor for schizophrenia in the Han Chinese population, and suggests molecular mechanisms by which it may exert such influence.

Collaboration


Dive into the Tzu-Pin Lu's collaboration.

Top Co-Authors

Avatar

Eric Y. Chuang

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Liang-Chuan Lai

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Mong-Hsun Tsai

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James J. Chen

National Center for Toxicological Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Hsu

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Jang-Ming Lee

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Kuan-Ting Kuo

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Tzu-Hung Hsiao

National Taiwan University

View shared research outputs
Researchain Logo
Decentralizing Knowledge