Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tzu-Wei Wang is active.

Publication


Featured researches published by Tzu-Wei Wang.


Biomaterials | 2013

Neural stem cells encapsulated in a functionalized self-assembling peptide hydrogel for brain tissue engineering.

Tzu-Yun Cheng; Ming-Hong Chen; Wen-Han Chang; Ming-Yuan Huang; Tzu-Wei Wang

Brain injury is almost irreparable due to the poor regenerative capability of neural tissue. Nowadays, new therapeutic strategies have been focused on stem cell therapy and supplying an appropriate three dimensional (3D) matrix for the repair of injured brain tissue. In this study, we specifically linked laminin-derived IKVAV motif on the C-terminal to enrich self-assembling peptide RADA(16) as a functional peptide-based scaffold. Our purpose is providing a functional self-assembling peptide 3D hydrogel with encapsulated neural stem cells to enhance the reconstruction of the injured brain. The physiochemical properties reported that RADA(16)-IKVAV can self-assemble into nanofibrous morphology with bilayer β-sheet structure and become gelationed hydrogel with mechanical stiffness similar to brain tissue. The in vitro results showed that the extended IKVAV sequence can serve as a signal or guiding cue to direct the encapsulated neural stem cells (NSCs) adhesion and then towards neuronal differentiation. Animal study was conducted in a rat brain surgery model to demonstrate the damage in cerebral neocortex/neopallium loss. The results showed that the injected peptide solution immediately in situ formed the 3D hydrogel filling up the cavity and bridging the gaps. The histological analyses revealed the RADA(16)-IKVAV self-assembling peptide hydrogel not only enhanced survival of encapsulated NSCs but also reduced the formation of glial astrocytes. The peptide hydrogel with IKVAV extended motifs also showed the support of encapsulated NSCs in neuronal differentiation and the improvement in brain tissue regeneration after 6 weeks post-transplantation.


Acta Biomaterialia | 2014

Tailored design of electrospun composite nanofibers with staged release of multiple angiogenic growth factors for chronic wound healing

Huan-Ju Lai; Chen-Hsiang Kuan; Hsi-Chin Wu; Jui-Che Tsai; Tim-Mo Chen; Dar-Jen Hsieh; Tzu-Wei Wang

The objective of this research study is to develop a collagen (Col) and hyaluronic acid (HA) inter-stacking nanofibrous skin equivalent substitute with the programmable release of multiple angiogenic growth factors (vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), basic fibroblast growth factor (bFGF) and endothelial growth factor (EGF)) either directly embedded in the nanofibers or encapsulated in the gelatin nanoparticles (GNs) by electrospinning technology. The delivery of EGF and bFGF in the early stage is expected to accelerate epithelialization and vasculature sprouting, while the release of PDGF and VEGF in the late stage is with the aim of inducing blood vessels maturation. The physiochemical characterizations indicate that the Col-HA-GN nanofibrous membrane possesses mechanical properties similar to human native skin. The design of a particle-in-fiber structure allows growth factors for slow controlled release up to 1month. Cultured on biodegradable Col-HA membrane with four kinds of growth factors (Col-HA w/4GF), endothelial cells not only increase in growth rate but also form a better network with a thread-like tubular structure. The therapeutic effect of Col-HA w/4GF membrane on streptozotocin (STZ)-induced diabetic rats reveals an accelerated wound closure rate, together with elevated collagen deposition and enhanced maturation of vessels, as revealed by Massons trichrome stain and immunohistochemical analysis, respectively. From the above, the electrospun Col-HA-GN composite nanofibrous skin substitute with a stage-wise release pattern of multiple angiogenic factors could be a promising bioengineered construct for chronic wound healing in skin tissue regeneration.


Acta Biomaterialia | 2013

Control of three-dimensional substrate stiffness to manipulate mesenchymal stem cell fate toward neuronal or glial lineages

Goh Jih Her; Hsi-Chin Wu; Ming-Hong Chen; Ming-Yi Chen; Shun-Chih Chang; Tzu-Wei Wang

The unlimited self-renewal and multipotency of stem cells provide great potential for applications in tissue engineering and regenerative medicine. The differentiation of stem cells can be induced by multiple factors including physical, chemical and biological cues. The fate of stem cells can be manipulated by deliberately controlling the interaction between stem cells and their microenvironment. The purpose of this study is to investigate the change in matrix stiffness under the influence of neurogenic differentiation of human mesenchymal stem cells (hMSCs). In this study, three-dimensional (3-D) porous scaffolds were synthesized by type I collagen (Col) and hyaluronic acid (HA). The elastic modulus of the 3-D substrates was modified by adjusting the concentration of 1-ethyl-3(3-dimethylaminopropyl) carbodiimide (EDC) as a crosslinking agent. The mechanical properties of Col-HA scaffolds were evaluated and the induction and characterization of hMSC differentiation toward neural lineages on substrates with different stiffnesses were studied. Using EDC of different concentrations for crosslinking, the stiffness of the matrices can be controlled in the range of 1-10 kPa for soft to stiff substrates, respectively. The results showed that MSCs were likely to differentiate into neuronal lineage in substrate at 1 kPa, while they transformed into glial cells in matrix at 10 kPa. The morphology and proliferation behavior of hMSCs responded to the different stiffnesses of substrates. Using this modifiable matrix, we can investigate the relationship between stem cell behavior and substrate mechanical properties in extracellular matrix-based biomimetic 3-D scaffolds. A substrate with controllable stiffness capable of inducing hMSCs specifically toward neuronal differentiation may be very useful as a tissue-engineered construct or substitute for delivering hMSCs into the brain and spinal cord.


Small | 2012

Carbon Nanotube Rope with Electrical Stimulation Promotes the Differentiation and Maturity of Neural Stem Cells

Yu-Jie Huang; Hsi-Chin Wu; Nyan-Hwa Tai; Tzu-Wei Wang

In recent years, the utilization of nanomaterials such as carbon nanotubes (CNTs) in the field of neuroscience has forever changed the approach to nerve-related research. The array of novel properties CNTs possess allows them to interact with neurons at the nanodimensional scale. In this study, a CNT rope substrate is developed to allow the electrical stimulation of neural stem cells (NSCs) in culture medium and the in situ observation of the response of these stem cells after stimulation. CNTs are synthesized by chemical vapor deposition and prepared into a ropelike structure with a diameter of 1 mm and length of 1.5 cm. NSCs are differentiated on the CNT rope substrate while the direction of neurite outgrowth, phenotype, and maturity of the NSCs are analyzed. Fluorescence and scanning electron microscopy demonstrate that neurite extension favors the direction of the spiral topography on the CNT rope. NSCs plated on CNT ropes are boosted towards differentiated neurons in the early culture stage when compared to conventional tissue culture plates via the analysis of neuronal gene and protein expressions by quantitative polymerase chain reaction and immunostaining, respectively. Furthermore, a set of electrical stimulation parameters (5 mV, 0.5 mA, 25 ms intermittent stimulation) promotes neuronal maturity while also increasing the speed of neurite outgrowth. These results indicate that an electroconductive CNT rope substrate along with electrical stimulation may have a synergistic effect on promoting neurite elongation and boosting effects on the differentiation of NSCs into mature neuronal cells for therapeutic application in neural regeneration.


Journal of Biomedical Materials Research Part A | 2009

Regulation of adult human mesenchymal stem cells into osteogenic and chondrogenic lineages by different bioreactor systems

Tzu-Wei Wang; Hsi-Chin Wu; Hsin-Yen Wang; Feng-Huei Lin; Jui-Sheng Sun

The aim of this study was to examine the feasibility of expanding and regulating mesenchymal stem cells (MSCs) from isolated adult human bone marrow mononuclear cells, seeded on gelatin-hyaluronic acid biomatrices, and then to quantitatively compare the gene expression in three different culture systems. Individual and interactive effects of model system parameters on construct structure, function, and molecular properties were evaluated. The results showed that these adult human MSCs even at old age not only expressed primitive mesenchymal cell markers but also maintained a high level of colony-forming efficiency and were capable of differentiating into osteoblasts, chondrocytes, and adipocytes upon appropriate inductions. After 21 days of culture, we found that the osteoblastic and chondrocytic lineage gene expression were earlier and higher expressed in spinner flask bioreactor culture group when compared with the static culture and rotating wall vessel reactor culture. The osteogenic lineage proteins type I collagen, alkaline phosphatase, and osteocalcin were strongly stained in histological sections of spinner flask bioreactor culture, whereas these were less detected in the other two groups, especially in rotating wall vessel reactor culture. As for the markers associated with the chondrogenic lineage differentiation proteins, type II collagen was apparently expressed in spinner flask culture group, while the expression of proteoglycans (aggreacan, decorin) in three culture conditions took the lead of each other. We conclude that the spinner flask bioreactor with appropriate induction medium reported in this study may be used to rapidly expand adult MSCs and is likely to possess better induction results toward osteoblastic and chondrocytic lineages.


Langmuir | 2013

Injectable and thermoresponsive self-assembled nanocomposite hydrogel for long-term anticancer drug delivery

Ying-Yu Chen; Hsi-Chin Wu; Jui-Sheng Sun; Guo-Chung Dong; Tzu-Wei Wang

The purpose of this study is to develop an injectable thermoresponsive hydrogel system that can undergo sol-gel phase transition by the stimulation of body temperature with improved mechanical stability and biocompatibility as a controlled drug delivery carrier for cancer therapy. Hexamethylene diisocyanate (HDI) was introduced into Pluronic F127 as a chain extender to improve the mechanical stability. HDI-Pluronic F127 copolymer was then incorporated with hyaluronic acid to develop a thermoresponsive nanocomposite hydrogel system. The physiochemical properties were characterized. The anticancer drug release profile and effect to inhibit tumor cells growth were analyzed in vitro and in vivo. The results showed that HDI-Pluronic F127/hyaluronic acid thermoresponsive hydrogel could undergo sol-gel transition as temperature increased to 37 °C. The nanocomposite polymer can spontaneously self-assemble into micellar structure with size of 100-200 nm. The release of doxorubicin (DOX) from HDI-PF127/HA composite hydrogel was a zero-order profile and maintained sustained release for over 28 days. The viability of tumor cells and size of tumor significantly decreased with incubation time, indicating the potential to have a therapeutic effect for cancer therapy. The injectable thermoresponsive nanocomposite hydrogel system was biocompatible and degradable and had the slow controlled release property for anticancer drugs with potential applications in the field of drug delivery.


ACS Applied Materials & Interfaces | 2013

Thermo-induced shape-memory PEG-PCL copolymer as a dual-drug-eluting biodegradable stent.

Chien-Shen Yang; Hsi-Chin Wu; Jui-Sheng Sun; Hao-Ming Hsiao; Tzu-Wei Wang

In this work, a thermo-induced shape-memory drug-eluting stent (SMDES) has been developed by cross-linking PEG-PCL copolymer (cPEG-PCL). The stent is able to perform the shape-memory effect from a temporary linear form to a permanent spiral shape with the transition temperature close to body temperature. The stent incorporates a controlled dual drug-release system for the purpose of preventing in-stent restenosis of the vessel for short- and long-term therapeutic effects. From the results, (1)H NMR and GPC indicate that the compositions of PEG-PCL block copolymers are similar to the feed ratios of PEG/ε-CL. A Youngs modulus of the cPEG-PCL stent can be achieved that ranges from tens to one hundred megapascals by modulation of the mixing ratio of PEG/PCL. The cPEG-PCL stent is demonstrated to recover to its permanent shape with a high fixing ratio (>99%), recovery ratio (>90%), and recovery time (<10 s). DSC data reveals that the transition temperature is around body temperature (40 °C). Cytotoxicity tests prove that the cPEG-PCL_6040 stent has good biocompatibility. In vitro degradation tests show that the cPEG-PCL_6040 stent undergoes a bulk degradation of 47% after 60 days of incubation under flow conditions. Platelet adhesion and smooth muscle cell proliferation were significantly inhibited by coculture with a mitomycin C/curcumin-eluting stent as a result of the release of curcumin for antiplatelet adhesion during the initial 2 weeks followed by long-term inhibition of smooth muscle cell hyperproliferation for 60 days via mitomycin C. After 60 days of incubation in a bioreactor, the appearance of the stent remains intact and shows no signs of recoiling or collapse.


Scientific Reports | 2016

Multi-functionalized carbon dots as theranostic nanoagent for gene delivery in lung cancer therapy.

Yu-Fen Wu; Hsi-Chin Wu; Chen-Hsiang Kuan; Chun-Jui Lin; Li-Wen Wang; Chien-Wen Chang; Tzu-Wei Wang

Theranostics, an integrated therapeutic and diagnostic system, can simultaneously monitor the real-time response of therapy. Different imaging modalities can combine with a variety of therapeutic moieties in theranostic nanoagents. In this study, a multi-functionalized, integrated theranostic nanoagent based on folate-conjugated reducible polyethylenimine passivated carbon dots (fc-rPEI-Cdots) is developed and characterized. These nanoagents emit visible blue photoluminescence under 360 nm excitation and can encapsulate multiple siRNAs (EGFR and cyclin B1) followed by releasing them in intracellular reductive environment. In vitro cell culture study demonstrates that fc-rPEI-Cdots is a highly biocompatible material and a good siRNA gene delivery carrier for targeted lung cancer treatment. Moreover, fc-rPEI-Cdots/pooled siRNAs can be selectively accumulated in lung cancer cells through receptor mediated endocytosis, resulting in better gene silencing and anti-cancer effect. Combining bioimaging of carbon dots, stimulus responsive property, gene silencing strategy, and active targeting motif, this multi-functionalized, integrated theranostic nanoagent may provide a useful tool and platform to benefit clinicians adjusting therapeutic strategy and administered drug dosage in real time response by monitoring the effect and tracking the development of carcinomatous tissues in diagnostic and therapeutic aspects.


Biomaterials | 2008

Application of highly sensitive, modified glass substrate-based immuno-PCR on the early detection of nasopharyngeal carcinoma

Tzu-Wei Wang; Hsiang-Yin Lu; Pei-Jen Lou; Feng-Huei Lin

In this study, we investigated the utilization of highly sensitive immuno-PCR (IPCR) method as a powerful tool to detect NPC in early disease stage. We established a substrate-ELISA platform as a model system for evaluation of the feasibility of our idea after surface modification process on glass beads. Therein the DNA-antibody conjugation was added to sensitize prior enzyme substrate-antibody complex. In the study, the detection efficiency of two different systems regarding sensitivity, affinity, and specificity was evaluated. Moreover, to show the efficacy of our IPCR system, commercialized ELISA kit was also included for comparison with our IPCR glass substrate-based capture system. The surface physical properties of the modified substrates were also tested with atomic force microscopy and X-ray photoelectron spectroscopy, together with the measurement of the water contact angle. In the results, various factors in the production of IPCR detection system were determined to maximize the effect on assay performance, including the modification of the glass surface properties, primary and secondary antibody optimal concentrations, and biotinylated reporter DNA concentration. We found that the sensitivity of IPCR was approximately over two order magnitude higher than that of conventional ELISA method. The result suggests that our IPCR system could be an applicable and reliable tool for early detection of NPC.


Biomaterials | 2016

Integrated self-assembling drug delivery system possessing dual responsive and active targeting for orthotopic ovarian cancer theranostics

Chun-Jui Lin; Chen-Hsiang Kuan; Li-Wen Wang; Hsi-Chin Wu; Yunching Chen; Chien-Wen Chang; Rih-Yang Huang; Tzu-Wei Wang

Ovarian cancers are the leading cause for mortality among gynecologic malignancies with five-year survival rate less than 30%. The purpose of this study is to develop a redox and pH-sensitive self-assembling hyaluronic acid nanoparticle with active targeting peptide for anticancer drug delivery. Anti-cancer drug is grafted onto hyaluronic acid (HA) via cis-aconityl linkage and disulfide bond to possess pH sensitivity and redox property, respectively. This conjugate is amphiphilic and can self-assemble into nanoparticle (NP) in aqueous solution. The results show that the nanoconjugate is successfully developed and the grafting ratio of cystamine (cys) is 17.8% with drug loading amount about 6.2% calculated by (1)H NMR spectra. The particle size is approximately 229.0 nm using dynamic light scatting measurement, and the morphology of nanoparticles is observed as spherical shape by transmission electron microscope. The pH and redox sensitivities are evaluated by changing either pH value or concentration of dithiothreitol in the medium. It is proved that the drug carrier is capable of achieving sustained controlled release of anti-cancer drug to 95% within 150 h. The intracellular uptake is observed by fluorescent microscope and the images show that conjugating luteinizing hormone-releasing hormone (LHRH) peptide can enhance specific uptake of nanoparticles by OVCAR-3 cancer cells; thus, resulting in inhibitory cell growth to less than 20% in 72 h in vitro. Orthotopic ovarian tumor model is also established to evaluate the therapeutic and diagnostic efficacy using non-invasive in vivo imaging system. The representative results demonstrate that LHRH-conjugated NPs possess a preferable tumor imaging capability and an excellent antitumor ability to almost 30% of original size in 20 days.

Collaboration


Dive into the Tzu-Wei Wang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jui-Sheng Sun

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Feng-Huei Lin

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Yi-Chau Huang

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Chen-Hsiang Kuan

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Ming-Hong Chen

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Chia-Wei Yeh

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar

Li-Wen Wang

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar

Chien-Wen Chang

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar

Chun-Jui Lin

National Tsing Hua University

View shared research outputs
Researchain Logo
Decentralizing Knowledge