Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tzuri Lifschytz is active.

Publication


Featured researches published by Tzuri Lifschytz.


European Neuropsychopharmacology | 2006

Sex-dependent effects of fluoxetine and triiodothyronine in the forced swim test in rats

Tzuri Lifschytz; Galit Shalom; Bernard Lerer; Michael E. Newman

The effects of triiodothyronine (T3) and fluoxetine, administered separately and combined, on behavior of male and female rats in the forced swim test, a procedure for screening antidepressant-like activity, were determined. There were no consistent effects of low doses of fluoxetine (5 mg/kg) or T3 (20 microg/kg), administered daily for 2 weeks. Fluoxetine administered daily at 10 mg/kg for 7 days reduced immobility and increased active behaviors in male rats, but had no effects in female rats. The effects of fluoxetine in male rats were not potentiated by T3. In female rats, T3 at 100 microg/kg given daily for 7 days decreased immobility and increased swimming when these were measured 72 h after the last injection, but not when measurements were performed at an earlier time point. These results provide some support from an animal model for the efficacy of T3 as antidepressant therapy in female patients, but do not provide support for the augmentation and acceleration effects seen clinically when T3 is used in conjunction with established antidepressants such as fluoxetine.


Journal of Neuroscience Methods | 2004

Effects of triiodothyronine and fluoxetine on 5-HT1A and 5-HT1B autoreceptor activity in rat brain: regional differences.

Tzuri Lifschytz; Eitan Gur; Bernard Lerer; Michael E. Newman

The thyroid hormone triiodothyronine (T3) augments and accelerates the effects of antidepressant drugs. Although the majority of studies showing this have used tricyclics, a few studies have shown similar effects with the selective serotonin re-uptake inhibitor (SSRI) fluoxetine. In this study we investigated the effects of fluoxetine (5 mg/kg), T3 (20 microg/kg) and the combination of these drugs, each administered daily for 7 days, on serotonergic function in the rat brain, using in vivo microdialysis. Fluoxetine alone induced a trend towards desensitization of 5-HT1A autoreceptors as shown by a reduction in the effect of 8-OH-DPAT to lower 5-HT levels in frontal cortex, and desensitized 5-HT1B autoreceptors in frontal cortex. The combination of fluoxetine and T3 induced desensitization of 5-HT1B autoreceptors in hypothalamus. Since there is evidence linking hypothalamic function and depression, we suggest that this effect may partly account for the therapeutic efficacy of the combination of an SSRI and T3.


The International Journal of Neuropsychopharmacology | 2012

Relationship between Rgs2 gene expression level and anxiety and depression-like behaviour in a mutant mouse model: serotonergic involvement

Tzuri Lifschytz; Esther C. Broner; Polina Zozulinsky; Alexandra Slonimsky; Renana Eitan; Lior Greenbaum; Bernard Lerer

RGS2 is a member of a family of proteins that negatively modulate G-protein coupled receptor transmission. Variations in the RGS2 gene were found to be associated in humans with anxious and depressive phenotypes. We sought to study the relationship of Rgs2 expression level to depression and anxiety-like behavioural features, sociability and brain 5-HT1A and 5-HT1B receptor expression. We studied male mice carrying a mutation that causes lower Rgs2 gene expression, employing mice heterozygous (Het) or homozygous (Hom) for this mutation, or wild-type (WT). Mice were subjected to behavioural tests reflecting depressive-like behaviour [forced swim test (FST), novelty suppressed feeding test (NSFT)], elevated plus maze (EPM) for evaluation of anxiety levels and the three-chamber sociability test. The possible involvement of raphe nucleus 5-HT1A receptors in these behavioural features was examined by 8-OH-DPAT-induced hypothermia. Expression levels of 5-HT1A and 5-HT1B receptors in the cortex, raphe nucleus and hypothalamus were compared among mice of the different Rgs2 genotype groups. NSFT results demonstrated that Hom mice showed more depressive-like features than Rgs2 Het and WT mice. A trend for such a relationship was also suggested by the FST results. EPM and sociability test results showed Hom and Het mice to be more anxious and less sociable than WT mice. In addition Hom and Het mice were characterized by lower basal body temperature and demonstrated less 8-OH-DPAT-induced hypothermia than WT mice. Finally, Hom and Het mice had significantly lower 5-HT1A and 5-HT1B receptor expression levels in the raphe than WT mice. Our findings demonstrate a relationship between Rgs2 gene expression level and a propensity for anxious and depressive-like behaviour and reduced social interaction that may involve changes in serotonergic receptor expression.


The International Journal of Neuropsychopharmacology | 2010

The thyroid hormone, triiodothyronine, enhances fluoxetine-induced neurogenesis in rats: possible role in antidepressant-augmenting properties

Renana Eitan; Galit Landshut; Tzuri Lifschytz; Tamir Ben-Hur; Bernard Lerer

The thyroid hormone triiodothyronine (T3) may accelerate and augment the action of antidepressants. Antidepressants up-regulate neurogenesis in adult rodent hippocampus. We studied the effect of T3 and T3+fluoxetine in enhancement of hippocampal neurogenesis beyond that induced by fluoxetine alone and the correlation with antidepressant behaviour in the novelty suppressed feeding test (NSFT). Rats were administered fluoxetine (5 mg/kg.d), T3 (50 mug/kg.d), fluoxetine (5 mg/kg.d)+T3 (50 mug/kg.d) or saline, for 21 d. Neurogenesis was studied by doublecortin (DCX) immunohistochemistry in the subgranular zone (SGZ) of the hippocampus and the subventricular zone (SVZ). In the NSFT, latency to feeding in animals deprived of food was measured. Fluoxetine and fluoxetine+T3 increased the number of doublecortin-positive (DCX+) cells in the SGZ compared to saline (p=0.00005, p=0.008, respectively). There was a trend towards an increased number of DCX+ cells by T3 compared to saline (p=0.06). Combined treatment with fluoxetine+T3 further increased the number of DCX+ cells compared to T3 or fluoxetine alone (p=0.001, p=0.014, respectively). There was no effect of any of the treatments on number of DCX+ cells in the SVZ. In the NSFT, all treatments (T3, fluoxetine+T3 and fluoxetine) reduced latency to feeding compared to saline (p=0.0004, p=0.00001, p=0.00009, respectively). Fluoxetine+T3 further reduced latency to feeding compared to T3 alone (p=0.05). The results suggest that enhancement of antidepressant action by T3 may be related to its effect of increasing hippocampal neurogenesis and that the antidepressant effect of these treatments is specific to the hippocampus and does not represent a general effect on cell proliferation.


Bipolar Disorders | 2016

Endogenous cardiac steroids in animal models of mania

Anastasia Hodes; Haim Rosen; Joseph Deutsch; Tzuri Lifschytz; Haim Einat; David Lichtstein

Bipolar disorder (BD) is a complex psychiatric disorder characterized by mania and depression. Alterations in brain Na+, K+‐ATPase and cardiac steroids (CSs) have been detected in BD, raising the hypothesis of their involvement in this pathology. The present study investigated the behavioral and biochemical consequences of a reduction in endogenous brain CS activity in animal models of mania.


Progress in Neuro-psychopharmacology & Biological Psychiatry | 2010

Effect of triiodothyronine on 5-HT1A and 5-HT1B receptor expression in rat forebrain and on latency to feed in the novelty suppressed feeding test.

Tzuri Lifschytz; Tanya Goltser-Dubner; Galit Landshut; Bernard Lerer

Thyroid hormones, particularly triiodothyronine (T3), have long been used for the treatment of depression, most frequently to enhance the therapeutic activity of other antidepressants. The purpose of this study was to evaluate possible underlying mechanisms for the antidepressant activity of T3. The effects of T3 20 microg/kg/d S.C. and fluoxetine 5mg/kg/d I.P. given alone or in combination for 7 days on the transcription rates of inhibitory serotonergic receptors (5-HT1A and 5-HT1B) were studied in different brain areas of male Sabra rats using real-time PCR. Significant effects of fluoxetine were found on the expression of 5-HT1B receptors in the frontal cortex and of T3 on the expression of 5-HT1A receptors in the amygdala and hippocampus and 5-HT1B receptors in the frontal and entorhinal cortices, the expression being reduced in all cases. An effect of the combination of T3 plus fluoxetine to reduce transcription was observed for 5-HT1A receptors, in the amygdala and dentate gyrus and for 5-HT1B receptors in the entorhinal cortex and anterior raphe nucleus. In the second experiment, the novelty suppressed feeding test (NFST) was used to examine the effects of fluoxetine 5mg/kg/d I.P. and T3 20 or 50 microg/kg/d, alone or in combination for 12 days, on latency to feed. Only the combinations of T3 (20 or 50 microg/kg/d) and fluoxetine (5mg/kg/d) yielded significant behavioral effects in this test. The results of our studies suggest that the mechanism underlying the antidepressant effect of T3 may involve a reduction in 5-HT1A and 5-HT1B receptor transcription rates.


Frontiers in Aging Neuroscience | 2017

Differentially Severe Cognitive Effects of Compromised Cerebral Blood Flow in Aged Mice: Association with Myelin Degradation and Microglia Activation

Gilly Wolf; Amit Lotan; Tzuri Lifschytz; Hagar Ben-Ari; Tirzah Kreisel Merzel; Pavel Tatarskyy; Michael Valitzky; Ben Mernick; Elad Avidan; Nickolay Koroukhov; Bernard Lerer

Bilateral common carotid artery stenosis (BCAS) models the effects of compromised cerebral blood flow on brain structure and function in mice. We compared the effects of BCAS in aged (21 month) and young adult (3 month) female mice, anticipating a differentially more severe effect in the older mice. Four weeks after surgery there was a significant age by time by treatment interaction on the radial-arm water maze (RAWM; p = 0.014): on the first day of the test, latencies of old mice were longer compared to the latencies of young adult mice, independent of BCAS. However, on the second day of the test, latencies of old BCAS mice were significantly longer than old control mice (p = 0.049), while latencies of old controls were similar to those of the young adult mice, indicating more severe impairment of hippocampal dependent learning and working memory by BCAS in the older mice. Fluorescence staining of myelin basic protein (MBP) showed that old age and BCAS both induced a significant decrease in fluorescence intensity. Evaluation of the number oligodendrocyte precursor cells demonstrated augmented myelin replacement in old BCAS mice (p < 0.05) compared with young adult BCAS and old control mice. While microglia morphology was assessed as normal in young adult control and young adult BCAS mice, microglia of old BCAS mice exhibited striking activation in the area of degraded myelin compared to young adult BCAS (p < 0.01) and old control mice (p < 0.05). These findings show a differentially more severe effect of cerebral hypoperfusion on cognitive function, myelin integrity and inflammatory processes in aged mice. Hypoperfusion may exacerbate degradation initiated by aging, which may induce more severe neuronal and cognitive phenotypes.


Brain Research Bulletin | 2018

Reduction in endogenous cardiac steroids protects the brain from oxidative stress in a mouse model of mania induced by amphetamine

Anastasia Hodes; Tzuri Lifschytz; Haim Rosen; Hagit Cohen Ben-Ami; David Lichtstein

OBJECTIVES Bipolar disorder (BD) is a severe mental illness characterized by episodes of mania and depression. Numerous studies have implicated the involvement of endogenous cardiac steroids (CS), and their receptor, Na+, K+ -ATPase, in BD. The aim of the present study was to examine the role of brain oxidative stress in the CS-induced behavioral effects in mice. METHODS Amphetamine (AMPH)-induced hyperactivity, assessed in the open-field test, served as a model for manic-like behavior in mice. A reduction in brain CS was obtained by specific and sensitive anti-ouabain antibodies. The level of oxidative stress was tested in the hippocampus and frontal cortex by measuring the activity of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), as well as the levels of antioxidant non-protein thiols (NPSH) and oxidative damage biomarkers thiobarbituric acid reactive substances (TBARS) and protein carbonyl (PC). RESULTS AMPH administration resulted in a marked hyperactivity and increased oxidative stress, as manifested by increased SOD activity, decreased activities of CAT and GPx, reduced levels of NPSH and increased levels of TBARS and PC. The administration of anti-ouabain antibodies, which reduced the AMPH-induced hyperactivity, protected against the concomitant oxidative stress in the brain. CONCLUSIONS Our results demonstrate that oxidative stress participates in the effects of endogenous CS on manic-like behavior induced by AMPH. These finding support the notion that CS and oxidative stress may be associated with the pathophysiology of mania and BD.


Journal of Pharmacology and Experimental Therapeutics | 2011

Effect of triiodothyronine on antidepressant screening tests in mice and on presynaptic 5-HT1A receptors: mediation by thyroid hormone α receptors.

Tzuri Lifschytz; Polina Zozulinsky; Renana Eitan; Galit Landshut; Sarit Ohayon; Bernard Lerer

Although triiodothyronine (T3) is widely used clinically, preclinical support for its antidepressant-like effects is limited, and the mechanisms are unknown. We evaluated 1) the antidepressant-like effects of T3 in the novelty suppressed feeding test (NSFT), tail suspension test (TST), and forced swim test (FST), 2) the role of presynaptic 5-HT1A receptors in the antidepressant-like mechanism of T3 by the hypothermic response to the 5-HT1A receptor agonist, 8-hydroxy-N,N-dipropyl-2-aminotetralin (8-OH-DPAT), 3) the thyroid hormone receptor type mediating the antidepressant-like effects by concurrent administration of the specific thyroid hormone α receptor (TRα) antagonist, dronedarone, and 4) the presence of these effects in both genders. Male and female BALB/c mice were administered 1) T3 (20, 50, 200, or 500 μg/kg per day) or vehicle or 2) T3 (50 μg/kg per day), dronedarone (100 μM/day), or the combination intraperitoneally for 21 days and then underwent a behavioral test battery. The NSFT showed a shortened latency to feed in males at the two lower T3 doses. The TST and FST showed decreased immobility in male mice at T3 doses >20 μg/kg per day and in females at all T3 doses. Concurrent dronedarone prevented T3 effects in males on the NSFT and in the TST and FST in both genders. Attenuation of 8-OH-DPAT-induced hypothermia was observed in males only and may be reduced by concurrent dronedarone. These findings support an antidepressant-like effect of T3. Attenuation of 8-OH-DPAT-induced hypothermia in males only suggests the need to evaluate a possible gender disparity in the role of presynaptic 5-HT1A receptors in T3 antidepressant mechanisms. Blockade by dronedarone of the antidepressant-like effects of T3 suggests that these effects are TRα receptor-mediated.


Translational Psychiatry | 2018

Effect of chronic unpredictable stress on mice with developmental under-expression of the Ahi1 gene: behavioral manifestations and neurobiological correlates

Gilly Wolf; Tzuri Lifschytz; Hagar Ben-Ari; Pavel Tatarskyy; Tirzah Kreisel Merzel; Amit Lotan; Bernard Lerer

The Abelson helper integration site 1 (Ahi1) gene plays a pivotal role in brain development and is associated with genetic susceptibility to schizophrenia, and other neuropsychiatric disorders. Translational research in genetically modified mice may reveal the neurobiological mechanisms of such associations. Previous studies of mice heterozygous for Ahi1 knockout (Ahi1+/−) revealed an attenuated anxiety response on various relevant paradigms, in the context of a normal glucocorticoid response to caffeine and pentylenetetrazole. Resting-state fMRI showed decreased amygdalar connectivity with various limbic brain regions and altered network topology. However, it was not clear from previous studies whether stress-hyporesponsiveness reflected resilience or, conversely, a cognitive-emotional deficit. The present studies were designed to investigate the response of Ahi1+/− mice to chronic unpredictable stress (CUS) applied over 9 weeks. Wild type (Ahi1+/+) mice were significantly affected by CUS, manifesting decreased sucrose preference (p < 0.05); reduced anxiety on the elevated plus maze and light dark box and decreased thigmotaxis in the open field (p < 0.01 0.05); decreased hyperthermic response to acute stress (p < 0.05); attenuated contextual fear conditioning (p < 0.01) and increased neurogenesis (p < 0.05). In contrast, Ahi1+/− mice were indifferent to the effects of CUS assessed with the same parameters. Our findings suggest that Ahi1 under-expression during neurodevelopment, as manifested by Ahi1+/− mice, renders these mice stress hyporesponsive. Ahi1 deficiency during development may attenuate the perception and/or integration of environmental stressors as a result of impaired corticolimbic connectivity or aberrant functional wiring. These neural mechanisms may provide initial clues as to the role Ahi1 in schizophrenia and other neuropsychiatric disorders.

Collaboration


Dive into the Tzuri Lifschytz's collaboration.

Top Co-Authors

Avatar

Bernard Lerer

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Amit Lotan

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Gilly Wolf

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Hagar Ben-Ari

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Pavel Tatarskyy

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Michael E. Newman

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Polina Zozulinsky

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Ben Mernick

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Galit Landshut

Hebrew University of Jerusalem

View shared research outputs
Researchain Logo
Decentralizing Knowledge