Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tzyy-Nan Huang is active.

Publication


Featured researches published by Tzyy-Nan Huang.


Neuron | 2004

Transcriptional Modification by a CASK-Interacting Nucleosome Assembly Protein

Guey-Shin Wang; Chen-Jei Hong; Tsen-Yann Yen; Hsin-Yi Huang; Yvonne Ou; Tzyy-Nan Huang; Wei-Gang Jung; Ting-Yu Kuo; Morgan Sheng; Ting-Fang Wang; Yi-Ping Hsueh

CASK acts as a coactivator for Tbr-1, an essential transcription factor in cerebral cortex development. Presently, the molecular mechanism of the CASK coactivation effect is unclear. Here, we report that CASK binds to another nuclear protein, CINAP, which binds histones and facilitates nucleosome assembly. CINAP, via its interaction with CASK, forms a complex with Tbr-1, regulating expression of the genes controlled by Tbr-1 and CASK, such as NR2b and reelin. A knockdown of endogenous CINAP in hippocampal neurons reduces the promoter activity of NR2b. Moreover, NMDA stimulation results in a reduction in the level of CINAP protein, via a proteasomal degradation pathway, correlating with a decrease in NR2b expression in neurons. This study suggests that reduction of the CINAP protein level by synaptic stimulation contributes to regulation of the transcriptional activity of the Tbr-1/CASK/CINAP protein complex and thus modifies expression of the NR2b gene.


Nature Communications | 2015

Trans-synaptic zinc mobilization improves social interaction in two mouse models of autism through NMDAR activation

Eun-Jae Lee; Hyejin Lee; Tzyy-Nan Huang; Changuk Chung; Wangyong Shin; Kyungdeok Kim; Jae-Young Koh; Yi-Ping Hsueh; Eunjoon Kim

Genetic aspects of autism spectrum disorders (ASDs) have recently been extensively explored, but environmental influences that affect ASDs have received considerably less attention. Zinc (Zn) is a nutritional factor implicated in ASDs, but evidence for a strong association and linking mechanism is largely lacking. Here we report that trans-synaptic Zn mobilization rapidly rescues social interaction in two independent mouse models of ASD. In mice lacking Shank2, an excitatory postsynaptic scaffolding protein, postsynaptic Zn elevation induced by clioquinol (a Zn chelator and ionophore) improves social interaction. Postsynaptic Zn is mainly derived from presynaptic pools and activates NMDA receptors (NMDARs) through postsynaptic activation of the tyrosine kinase Src. Clioquinol also improves social interaction in mice haploinsufficient for the transcription factor Tbr1, which accompanies NMDAR activation in the amygdala. These results suggest that trans-synaptic Zn mobilization induced by clioquinol rescues social deficits in mouse models of ASD through postsynaptic Src and NMDAR activation.


The Journal of Neuroscience | 2013

TLR7 Negatively Regulates Dendrite Outgrowth through the Myd88–c-Fos–IL-6 Pathway

Hsin-Yu Liu; Yun-Fen Hong; Chiao-Ming Huang; Chiung-Ya Chen; Tzyy-Nan Huang; Yi-Ping Hsueh

Toll-like receptors (TLRs) recognize both pathogen- and danger-associated molecular patterns and induce innate immune responses. Some TLRs are expressed in neurons and regulate neurodevelopment and neurodegeneration. However, the downstream signaling pathways and effectors for TLRs in neurons are still controversial. In this report, we provide evidence that TLR7 negatively regulates dendrite growth through the canonical myeloid differentiation primary response gene 88 (Myd88)–c-Fos–interleukin (IL)-6 pathway. Although both TLR7 and TLR8 recognize single-stranded RNA (ssRNA), the results of quantitative reverse transcription-PCR suggested that TLR7 is the major TLR recognizing ssRNA in brains. In both in vitro cultures and in utero electroporation experiments, manipulation of TLR7 expression levels was sufficient to alter neuronal morphology, indicating the presence of intrinsic TLR7 ligands. Besides, the RNase A treatment that removed ssRNA in cultures promoted dendrite growth. We also found that the addition of ssRNA and synthetic TLR7 agonists CL075 and loxoribine, but not R837 (imiquimod), to cultured neurons specifically restricted dendrite growth via TLR7. These results all suggest that TLR7 negatively regulates neuronal differentiation. In cultured neurons, TLR7 activation induced IL-6 and TNF-α expression through Myd88. Using Myd88-, IL-6-, and TNF-α-deficient neurons, we then demonstrated the essential roles of Myd88 and IL-6, but not TNF-α, in the TLR7 pathway to restrict dendrite growth. In addition to neuronal morphology, TLR7 knockout also affects mouse behaviors, because young mutant mice ∼2 weeks of age exhibited noticeably lower exploratory activity in an open field. In conclusion, our study suggests that TLR7 negatively regulates dendrite growth and influences cognition in mice.


The Journal of Comparative Neurology | 2006

Neural activity- and development-dependent expression and distribution of CASK interacting nucleosome assembly protein in mouse brain

Chia-Wen Lin; Tzyy-Nan Huang; Guey-Shin Wang; Ting-Yu Kuo; Tsen-Yann Yen; Yi-Ping Hsueh

CASK interacting nucleosome assembly protein (CINAP) modulates gene expression and its abundance in cultured neurons is regulated by synaptic activity. To further study the function of CINAP in vivo, we examined the temporal and spatial expression profiles of CINAP. CINAP was widely expressed in different regions of adult mouse brain, including the cerebral cortex, hippocampus, striatum, hypothalamus, cerebellum, and two adult brain regions known to generate progenitor neurons. During early development, CINAP was also expressed in regions where neuronal progenitor cells were actively dividing, the ventricular and subventricular zones, suggesting that in addition to regulating gene expression in mature neurons, CINAP may also play a role in dividing cells. Since the hypothalamus responds to several physiological responses, we examined whether CINAP protein levels in the paraventricular nucleus (PVN) of the hypothalamus are regulated by changes in osmolality achieved through oral administration of hypertonic saline. Compared with control mice, mice treated with hypertonic saline expressed higher CINAP protein levels in the PVN, supporting a role of CINAP in neural response in vivo. Using confocal microscopic analysis, a significant amount of CINAP was found in the cytoplasm of neurons. Biochemical fractionation further confirmed that CINAP was associated with synapses, suggesting a translocation of CINAP protein from synapse to the nucleus. Consistent with this speculation, nuclear CINAP levels in the PVN were higher in hypertonic saline‐treated mice than those who drank water. CINAP may be regulated through changes in protein stability and nuclear translocation in neurons. J. Comp. Neurol. 494:606–619, 2006.


Biochemical and Biophysical Research Communications | 2009

CASK point mutation regulates protein-protein interactions and NR2b promoter activity.

Tzyy-Nan Huang; Yi-Ping Hsueh

Mutations in the CASK gene result in mental retardation and microcephaly in humans, suggesting an important role for CASK in brain. CASK gene knockout in mice causes neonatal lethality, making further elucidation in mouse models difficult. Because CASK was originally identified as a multidomain adaptor protein, identifying a point mutation interrupting a specific protein interaction would be useful in dissecting its molecular function. Here, a Thr-to-Ala mutation in the rat CASK guanylate kinase (GK) domain was shown to reduce interactions among CASK and Tbr-1 and CINAP, two critical brain proteins. The effect is specific: this mutation does not affect CASK dimerization that occurs via the GK domain. The Tbr-1-CASK-CINAP complex regulates expression of the NMDA receptor subunit 2b (NR2b), and we show that this point mutation also affects NR2b promoter activity. The identification of this mutation may make it possible to further dissect the function of CASK in brain.


Human Molecular Genetics | 2017

Mice lacking cyclin-dependent kinase-like 5 manifest autistic and ADHD-like behaviors

Cian-Ling Jhang; Tzyy-Nan Huang; Yi-Ping Hsueh; Wenlin Liao

&NA; Neurodevelopmental disorders frequently share common clinical features and appear high rate of comorbidity, such as those present in patients with attention‐deficit hyperactivity disorder (ADHD) and autism spectrum disorders (ASD). While characterizing behavioral phenotypes in the mouse model of cyclin‐dependent kinase‐like 5 (CDKL5) disorder, a neurodevelopmental disorder caused by mutations in the X‐linked gene encoding CDKL5, we found that these mice manifested behavioral phenotypes mimicking multiple key features of ASD, such as impaired social interaction and communication, as well as increased stereotypic digging behaviors. These mice also displayed hyper‐locomotion, increased aggressiveness and impulsivity, plus deficits in motor and associative learning, resembling primary symptoms of ADHD. Through brain region‐specific biochemical analysis, we uncovered that loss of CDKL5 disrupts dopamine synthesis and the expression of social communication‐related key genes, such as forkhead‐box P2 and mu‐opioid receptor, in the corticostriatal circuit. Together, our findings support that CDKL5 plays a role in the comorbid features of autism and ADHD, and mice lacking CDKL5 may serve as an animal model to study the molecular and circuit mechanisms underlying autism‐ADHD comorbidity.


Frontiers in Neuroscience | 2015

Brain-specific transcriptional regulator T-brain-1 controls brain wiring and neuronal activity in autism spectrum disorders

Tzyy-Nan Huang; Yi-Ping Hsueh

T-brain-1 (TBR1) is a brain-specific T-box transcription factor. In 1995, Tbr1 was first identified from a subtractive hybridization that compared mouse embryonic and adult telencephalons. Previous studies of Tbr1−∕− mice have indicated critical roles for TBR1 in the development of the cerebral cortex, amygdala, and olfactory bulb. Neuronal migration and axonal projection are two important developmental features controlled by TBR1. Recently, recurrent de novo disruptive mutations in the TBR1 gene have been found in patients with autism spectrum disorders (ASDs). Human genetic studies have identified TBR1 as a high-confidence risk factor for ASDs. Because only one allele of the TBR1 gene is mutated in these patients, Tbr1+∕− mice serve as a good genetic mouse model to explore the mechanism by which de novo TBR1 mutation leads to ASDs. Although neuronal migration and axonal projection defects of cerebral cortex are the most prominent phenotypes in Tbr1−∕− mice, these features are not found in Tbr1+∕− mice. Instead, inter- and intra-amygdalar axonal projections and NMDAR expression and activity in amygdala are particularly susceptible to Tbr1 haploinsufficiency. The studies indicated that both abnormal brain wiring (abnormal amygdalar connections) and excitation/inhibition imbalance (NMDAR hypoactivity), two prominent models for ASD etiology, are present in Tbr1+∕− mice. Moreover, calcium/calmodulin-dependent serine protein kinase (CASK) was found to interact with TBR1. The CASK–TBR1 complex had been shown to directly bind the promoter of the Grin2b gene, which is also known as Nmdar2b, and upregulate Grin2b expression. This molecular function of TBR1 provides an explanation for NMDAR hypoactivity in Tbr1+∕− mice. In addition to Grin2b, cell adhesion molecules—including Ntng1, Cdh8, and Cntn2—are also regulated by TBR1 to control axonal projections of amygdala. Taken together, the studies of Tbr1 provide an integrated picture of ASD etiology at the cellular and circuit levels.


Scientific Reports | 2016

AIM 2 inflammasomes regulate neuronal morphology and influence anxiety and memory in mice

Pei-Jung Wu; Hsin-Yu Liu; Tzyy-Nan Huang; Yi-Ping Hsueh

Inflammasomes are the protein assemblies that consist of inflammasome sensors, adaptor apoptosis-associated speck-like proteins containing a CARD (ASC) and inflammasome caspase. Inflammasomes sense multiple danger signals via various inflammasome sensors and consequently use caspase to trigger proteolytic processing and secretion of IL-1β cytokines. Recent studies have suggested that neurons use their own innate immune system to detect danger signals and regulate neuronal morphology. Here, we investigate whether inflammasomes, the critical components of innate immunity, participate in regulation of neuronal morphology and function. Among various sensors, Absent in melanoma 2 (Aim2) expression in neurons is most prominent. Adding synthetic double-stranded DNA (dsDNA) to cultured neurons induces IL-1β secretion in an AIM2-dependent manner and consequently downregulates dendritic growth but enhances axon extension. The results of Aim2 knockout and knockdown show that AIM2 acts cell-autonomously to regulate neuronal morphology. Behavioral analyses further reveal that Aim2−/− mice exhibit lower locomotor activity, increased anxious behaviors and reduced auditory fear memory. In conclusion, our study suggests that AIM2 inflammasomes regulate neuronal morphology and influence mouse behaviors.


Autophagy | 2014

Interorganelle interactions and inheritance patterns of nuclei and vacuoles in budding yeast meiosis

I-Ting Tsai; Jyun-Liang Lin; Yi-Hsuan Chiang; Yu-Chien Chuang; Shu-Shan Liang; Chi-Ning Chuang; Tzyy-Nan Huang; Ting-Fang Wang

Many of the mechanisms by which organelles are inherited by spores during meiosis are not well understood. Dramatic chromosome motion and bouquet formation are evolutionarily conserved characteristics of meiotic chromosomes. The budding yeast bouquet genes (NDJ1, MPS3, CSM4) mediate these movements via telomere attachment to the nuclear envelope (NE). Here, we report that during meiosis the NE is in direct contact with vacuoles via nucleus-vacuole junctions (NVJs). We show that in meiosis NVJs are assembled through the interaction of the outer NE-protein Nvj1 and the vacuolar membrane protein Vac8. Notably, NVJs function as diffusion barriers that exclude the nuclear pore complexes, the bouquet protein Mps3 and NE-tethered telomeres from the outer nuclear membrane and nuclear ER, resulting in distorted NEs during early meiosis. An increase in NVJ area resulting from Nvj1-GFP overexpression produced a moderate bouquet mutant-like phenotype in wild-type cells. NVJs, as the vacuolar contact sites of the nucleus, were found to undergo scission alongside the NE during meiotic nuclear division. The zygotic NE and NVJs were partly segregated into 4 spores. Lastly, new NVJs were also revealed to be synthesized de novo to rejoin the zygotic NE with the newly synthesized vacuoles in the mature spores. In conclusion, our results revealed that budding yeast nuclei and vacuoles exhibit dynamic interorganelle interactions and different inheritance patterns in meiosis, and also suggested that nvj1Δ mutant cells may be useful to resolve the technical challenges pertaining to the isolation of intact nuclei for the biochemical study of meiotic nuclear proteins.


Journal of Psychiatry & Neuroscience | 2017

Calcium/calmodulin-dependent serine protein kinase (CASK), a protein implicated in mental retardation and autism-spectrum disorders, interacts with T-Brain-1 (TBR1) to control extinction of associative memory in male mice

Tzyy-Nan Huang; Yi-Ping Hsueh

Background Human genetic studies have indicated that mutations in calcium/calmodulin-dependent serine protein kinase (CASK) result in X-linked mental retardation and autism-spectrum disorders. We aimed to establish a mouse model to study how Cask regulates mental ability. Methods Because Cask encodes a multidomain scaffold protein, a possible strategy to dissect how CASK regulates mental ability and cognition is to disrupt specific protein–protein interactions of CASK in vivo and then investigate the impact of individual specific protein interactions. Previous in vitro analyses indicated that a rat CASK T724A mutation reduces the interaction between CASK and T-brain-1 (TBR1) in transfected COS cells. Because TBR1 is critical for glutamate receptor, ionotropic, N-methyl-D-aspartate receptor subunit 2B (Grin2b) expression and is a causative gene for autism and intellectual disability, we then generated CASK T740A (corresponding to rat CASK T724A) mutant mice using a gene-targeting approach. Immunoblotting, coimmunoprecipitation, histological methods and behavioural assays (including home cage, open field, auditory and contextual fear conditioning and conditioned taste aversion) were applied to investigate expression of CASK and its related proteins, the protein–protein interactions of CASK, and anatomic and behavioural features of CASK T740A mice. Results The CASK T740A mutation attenuated the interaction between CASK and TBR1 in the brain. However, CASK T740A mice were generally healthy, without obvious defects in brain morphology. The most dramatic defect among the mutant mice was in extinction of associative memory, though acquisition was normal. Limitations The functions of other CASK protein interactions cannot be addressed using CASK T740A mice. Conclusion Disruption of the CASK and TBR1 interaction impairs extinction, suggesting the involvement of CASK in cognitive flexibility.

Collaboration


Dive into the Tzyy-Nan Huang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge