Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where U. Bach is active.

Publication


Featured researches published by U. Bach.


Astronomy and Astrophysics | 2006

The unprecedented optical outburst of the quasar 3C 454.3 : The WEBT campaign of 2004-2005

M. Villata; C. M. Raiteri; Thomas J. Balonek; Margo F. Aller; S. G. Jorstad; O. M. Kurtanidze; Fabrizio Nicastro; K. Nilsson; Hugh D. Aller; Akira Arai; A. A. Arkharov; U. Bach; E. Benítez; A. Berdyugin; C. S. Buemi; M. Böttcher; D. Carosati; R. Casas; A. Caulet; W. P. Chen; P. S. Chiang; Yi Chou; S. Ciprini; J. M. Coloma; G. Di Rico; C. Díaz; N. V. Efimova; C. Forsyth; A. Frasca; L. Fuhrmann

Context. The radio quasar 3C 454.3 underwent an exceptional optical outburst lasting more than 1 year and culminating in spring 2005. The maximum brightness detected was


The Astrophysical Journal | 2007

The WEBT Campaign on the Blazar 3C 279 in 2006

M. Böttcher; S. Basu; M. Joshi; M. Villata; Akira Arai; N. Aryan; I. M. Asfandiyarov; U. Bach; A. Berduygin; M. Blaek; C. S. Buemi; A. J. Castro-Tirado; A. de Ugarte Postigo; A. Frasca; L. Fuhrmann; V. A. Hagen-Thorn; G. Henson; T. Hovatta; R. Hudec; M. A. Ibrahimov; Yuko Ishii; R. Z. Ivanidze; Martin Jelinek; M. Kamada; B. Z. Kapanadze; M. Katsuura; D. Kotaka; Y. Y. Kovalev; Yu. A. Kovalev; P. Kubánek

R=12.0


Astronomy and Astrophysics | 2013

Radio to gamma-ray variability study of blazar S5 0716+714

Bindu Rani; T. P. Krichbaum; L. Fuhrmann; Markus Böttcher; B. Lott; Hugh D. Aller; Margo F. Aller; E. Angelakis; U. Bach; D. Bastieri; A. Falcone; Yasushi Fukazawa; K. E. Gabanyi; Alok C. Gupta; M. A. Gurwell; R. Itoh; Koji S. Kawabata; M. Krips; A. Lähteenmäki; Xiao-Lan Liu; N. Marchili; W. Max-Moerbeck; I. Nestoras; E. Nieppola; G. Quintana-Lacaci; Anthony C. S. Readhead; J. L. Richards; Mahito Sasada; A. Sievers; K. V. Sokolovsky

, which represents the most luminous quasar state thus far observed (


Astronomy and Astrophysics | 2010

Another look at the BL Lacertae flux and spectral variability - Observations by GASP-WEBT, XMM-Newton, and Swift in 2008–2009

C. M. Raiteri; M. Villata; L. Bruschini; Alessandro Capetti; O. M. Kurtanidze; V. M. Larionov; Patrizia Romano; S. Vercellone; I. Agudo; Hugh D. Aller; Margo F. Aller; A. A. Arkharov; U. Bach; A. Berdyugin; D. A. Blinov; M. Böttcher; C. S. Buemi; P. Calcidese; D. Carosati; R. Casas; W. P. Chen; J. M. Coloma; C. Diltz; A. Di Paola; M. Dolci; N. V. Efimova; E. Forné; J. L. Gómez; M. A. Gurwell; A. Hakola

M_B sim -31.4


Astronomy and Astrophysics | 2006

Multifrequency variability of the blazar AO 0235+164.The WEBT campaign in 2004-2005 and long-term SED analysis

C. M. Raiteri; M. Villata; M. Kadler; M. A. Ibrahimov; Omar M. Kurtanidze; V. M. Larionov; M. Tornikoski; P. Boltwood; C.-U. Lee; Margo F. Aller; Gustavo E. Romero; Hugh D. Aller; Anabella T. Araudo; A. A. Arkharov; U. Bach; David A. Barnaby; A. Berdyugin; C. S. Buemi; Michael T. Carini; D. Carosati; Sergio A. Cellone; R. Cool; M. Dolci; N. V. Efimova; L. Fuhrmann; V. A. Hagen-Thorn; M. Holcomb; I. Ilyin; V. Impellizzeri; R. Z. Ivanidze

). Aims. In order to follow the emission behaviour of the source in detail, a large multiwavelength campaign was organized by the Whole Earth Blazar Telescope (WEBT). Methods. Continuous optical, near-IR and radio monitoring was performed in several bands. ToO pointings by the Chandra and INTEGRAL satellites provided additional information at high energies in May 2005. Results. The historical radio and optical light curves show different behaviours. Until about 2001.0 only moderate variability was present in the optical regime, while prominent and long-lasting radio outbursts were visible at the various radio frequencies, with higher-frequency variations preceding the lower-frequency ones. After that date, the optical activity increased and the radio flux is less variable. This suggests that the optical and radio emissions come from two separate and misaligned jet regions, with the inner optical one acquiring a smaller viewing angle during the 2004-2005 outburst. Moreover, the colour-index behaviour (generally redder-when-brighter) during the outburst suggests the presence of a luminous accretion disc. A huge mm outburst followed the optical one, peaking in June-July 2005. The high-frequency (37-43 GHz) radio flux started to increase in early 2005 and reached a maximum at the end of our observing period (end of September 2005). VLBA observations at 43 GHz during the summer confirm the brightening of the radio core and show an increasing polarization. An exceptionally bright X-ray state was detected in May 2005, corresponding to the rising mm flux and suggesting an inverse-Compton nature of the hard X-ray spectrum. Conclusions. A further multifrequency monitoring effort is needed to follow the next phases of this unprecedented event.


Astronomy and Astrophysics | 2011

The long-lasting activity of 3C 454.3 - GASP-WEBT and satellite observations in 2008–2010

C. M. Raiteri; M. Villata; Margo F. Aller; M. A. Gurwell; O. M. Kurtanidze; A. Lähteenmäki; V. M. Larionov; Patrizia Romano; S. Vercellone; I. Agudo; Hugh D. Aller; A. A. Arkharov; U. Bach; E. Benítez; A. Berdyugin; D. A. Blinov; E. V. Borisova; M. Böttcher; O. J. A. Bravo Calle; C. S. Buemi; P. Calcidese; D. Carosati; R. Casas; W. P. Chen; N. V. Efimova; J. L. Gómez; C. Gusbar; K. Hawkins; J. Heidt; D. Hiriart

Thequasar3C279wasthetargetof anextensivemultiwavelengthmonitoringcampaignfrom2006Januarythrough April. An optical-IR-radio monitoring campaign by the Whole Earth Blazar Telescope (WEBT) collaboration was organized around target-of-opportunity X-ray and soft � -ray observations with Chandra and INTEGRAL in 2006 midJanuary, with additional X-ray coverage by RXTE and Swift XRT. In this paper we focus on the results of the WEBT campaign. Thesource exhibited substantial variability of opticalflux and spectralshape,witha characteristictimescale of a few days. The variability patterns throughout the optical BVRI bands were very closely correlated with each other, while there was no obvious correlation between the optical and radio variability. After the ToO trigger, the optical flux


Astronomy and Astrophysics | 2012

Variability of the blazar 4C 38.41 (B3 1633+382) from GHz frequencies to GeV energies

C. M. Raiteri; M. Villata; Paul S. Smith; V. M. Larionov; J. A. Acosta-Pulido; Margo F. Aller; F. D'Ammando; Gurwell; S. G. Jorstad; M. Joshi; O. M. Kurtanidze; A. Lähteenmäki; D. O. Mirzaqulov; I. Agudo; Hugh D. Aller; M. J. Arévalo; A. A. Arkharov; U. Bach; E. Benítez; A. Berdyugin; D. A. Blinov; K. Blumenthal; C. S. Buemi; A. Bueno; T.M. Carleton; M. I. Carnerero; D. Carosati; C. Casadio; W. P. Chen; A. Di Paola

We present the results of a series of radio, optical, X-ray, and γ-ray observations of the BL Lac object S50716+714 carried out between April 2007 and January 2011. The multifrequency observations were obtained using several ground- and space-based facilities. The intense optical monitoring of the source reveals faster repetitive variations superimposed on a long-term variability trend on a time scale of ∼350 days. Episodes of fast variability recur on time scales of ∼60−70 days. The intense and simultaneous activity at optical and γ-ray frequencies favors the synchrotron self-Compton mechanism for the production of the high-energy emission. Two major low-peaking radio flares were observed during this high optical/γ-ray activity period. The radio flares are characterized by a rising and a decaying stage and agrees with the formation of a shock and its evolution. We found that the evolution of the radio flares requires a geometrical variation in addition to intrinsic variations of the source. Different estimates yield robust and self-consistent lower limits of δ ≥ 20 and equipartition magnetic field Beq ≥ 0.36 G. Causality arguments constrain the size of emission region θ ≤ 0.004 mas. We found a significant correlation between flux variations at radio frequencies with those at optical and γ-rays. The optical/GeV flux variations lead the radio variability by ∼65 days. The longer time delays between low-peaking radio outbursts and optical flares imply that optical flares are the precursors of radio ones. An orphan X-ray flare challenges the simple, one-zone emission models, rendering them too simple. Here we also describe the spectral energy distribution modeling of the source from simultaneous data taken through different activity periods.


Astronomy and Astrophysics | 2007

Multi-frequency monitoring of γ-ray loud blazars I. Light curves and spectral energy distributions

U. Bach; C. M. Raiteri; M. Villata; L. Fuhrmann; C. S. Buemi; V. M. Larionov; P. Leto; A. A. Arkharov; J. M. Coloma; A. Di Paola; M. Dolci; N. V. Efimova; E. Forne; Mansur A. Ibrahimov; V. A. Hagen-Thorn; T. S. Konstantinova; E. N. Kopatskaya; L. Lanteri; Omar M. Kurtanidze; G. Maccaferri; M. G. Nikolashvili; A. Orlati; J. A. Ros; G. Tosti; C. Trigilio; G. Umana

Aims. In a previous study we suggested that the broad-band emission and variability properties of BL Lacertae can be accounted for by a double synchrotron emission component with related inverse-Compton emission from the jet, plus thermal radiation from the accretion disc. Here we investigate the matter with further data extending over a wider energy range. Methods. The GLAST-AGILE Support Program (GASP) of the Whole Earth Blazar Telescope (WEBT) monitored BL Lacertae in 2008‐2009 at radio, near-IR, and optical frequencies to follow its flux behaviour. During this period, high-energy observations were performed by XMMNewton, Swift, and Fermi. We analyse these data with particular attention to the calibration of Swift UV data, and apply a helical jet model to interpret the source broad-band variability. Results. The GASP-WEBT observations show an optical flare in 2008 February‐March, and oscillations of several tenths of mag on a few-day time scale afterwards. The radio flux is only mildly variable . The UV data from both XMM-Newton and Swift seem to confirm a UV excess that is likely caused by thermal emission from the accretion disc. The X-ray data from XMM-Newton indicate a strongly concave spectrum, as well as moderate (�4‐7%) flux variability on an hour time scale. The Swift X-ray d ata reveal fast (interday) flux changes, not correlated with those observed at lower energies. We compare the spectral energy distribution (SED) corresponding to the 2008 low-brightness state, which was characterised by a synchrotron dominance, to the 1997 outburst state, where the inverse-Compton emission was prevailing. A fit with an inhomogeneous helical jet model suggests that two synchrotron components are at work with their self inverse-Compton emission. Most likely, they represent the radiation from two distinct emitting reg ions in the jet. We show that the difference between the source SEDs in 2008 and 1997 can be explained in terms of pure geometrical variations. The outburst state occurred when the jet-emitting regions were better aligned with the line of sight, producing an increase of the Doppler beaming factor. Conclusions. Our analysis demonstrates that the jet geometry can play an extremely important role in the BL Lacertae flux and spectral v ariability. Indeed, the emitting jet is probably a bent and dynamic structure, and hence changes in the emitting regions viewing angles are likely to happen, with strong consequences on the source multiwavelength behaviour.


Astronomy and Astrophysics | 2017

Location of γ-ray emission and magnetic field strengths in OJ 287

Jeffrey A. Hodgson; T. P. Krichbaum; Alan P. Marscher; S. G. Jorstad; Bindu Rani; Ivan Marti-Vidal; U. Bach; S. Sanchez; Michael Bremer; Michael Lindqvist; M. Uunila; J. Kallunki; Pablo de Vicente; L. Fuhrmann; E. Angelakis; V. Karamanavis; I. Myserlis; I. Nestoras; C. Chidiac; A. Sievers; M. A. Gurwell; J. A. Zensus

Aims. A huge multiwavelength campaign targeting the blazar AO 0235+164 was organized by the Whole Earth Blazar Telescope (WEBT) in 2003-2005 to study the variability properties of the source. Methods. Monitoring observations were carried out at cm and mm wavelengths, and in the near-IR and optical bands, while three pointings by the XMM-Newton satellite provided information on the X-ray and UV emission. Results. We present the data acquired during the second observing season, 2004-2005, by 27 radio-to-optical telescopes. The ∼2600 data points collected allow us to trace the low-energy behaviour of the source in detail, revealing an increased near-IR and optical activity with respect to the previous season. Increased variability is also found at the higher radio frequencies, down to ∼15 GHz, but not at the lower ones. While the X-ray (and optical) light curves obtained during the XMM-Newton pointings reveal no significant short-term variability, the simultaneous intraday radio observations with the 100 m telescope at Effelsberg show flux-density changes at 10.5 GHz, which are more likely due to a combination of intrinsic and extrinsic processes. Conclusions. The radio (and optical) outburst predicted to peak around February-March 2004 on the basis of the previously observed 5-6 yr quasi-periodicity did not occur. The analysis of the optical light curves reveals now a longer characteristic time scale of variability of ∼8 yr, which is also present in the radio data. The spectral energy distributions corresponding to the XMM-Newton observations performed during the WEBT campaign are compared with those pertaining to previous pointings of X-ray satellites. Bright, soft X-ray spectra can be described in terms of an extra component, which appears also when the source is faint through a hard UV spectrum and a curvature of the X-ray spectrum. Finally, there might be a correlation between the X-ray and optical bright states with a long time delay of about 5 yr, which would require a geometrical interpretation.


Physics Letters A | 2017

Probing the gravitational redshift with an Earth-orbiting satellite

D.A. Litvinov; V. N. Rudenko; A.V. Alakoz; U. Bach; N. Bartel; A.V. Belonenko; K.G. Belousov; Michael F. Bietenholz; A.V. Biriukov; R. Carman; Giuseppe Cimo; C. Courde; D. Dirkx; D. A. Duev; A.I. Filetkin; G. Granato; Leonid I. Gurvits; A. V. Gusev; Rüdiger Haas; G. Herold; A. Kahlon; B.Z. Kanevsky; V.L. Kauts; G.D. Kopelyansky; A.V. Kovalenko; Gerhard Kronschnabl; Victor V. Kulagin; A.M. Kutkin; Michael Lindqvist; J. E. J. Lovell

Context. The blazar 3C 454.3 is one of the most active sources from the radio to the γ-ray frequencies observed in the past few years. Aims. We present multiwavelength observations of this source from April 2008 to March 2010. The radio to optical data are mostly from the GASP-WEBT, UV and X-ray data from Swift, and γ-ray data from the AGILE and Fermi satellites. The aim is to understand the connection among emissions at different frequencies and to derive information on the emitting jet. Methods. Light curves in 18 bands were carefully assembled to study flux variability correlations. We improved the calibration of optical-UV data from the UVOT and OM instruments and estimated the Lyα flux to disentangle the contributions from different components in this spectral region. Results. The observations reveal prominent variability above 8 GHz. In the optical-UV band, the variability amplitude decreases with increasing frequency due to a steadier radiation from both a broad line region and an accretion disc. The optical flux reaches nearly the same levels in the 2008–2009 and 2009–2010 observing seasons; the mm one shows similar behaviour, whereas the γ and X-ray flux levels rise in the second period. Two prominent γ-ray flares in mid 2008 and late 2009 show a double-peaked structure, with a variable γ/optical flux ratio. The X-ray flux variations seem to follow the γ-ray and optical ones by about 0.5 and 1 d, respectively. Conclusions. We interpret the multifrequency behaviour in terms of an inhomogeneous curved jet, where synchrotron radiation of increasing wavelength is produced in progressively outer and wider jet regions, which can change their orientation in time. In particular, we assume that the long-term variability is due to this geometrical effect. By combining the optical and mm light curves to fit the γ and X-ray ones, we find that the γ (X-ray) emission may be explained by inverse-Comptonisation of synchrotron optical (IR) photons by their parent relativistic electrons (SSC process). A slight, variable misalignment between the synchrotron and Comptonisation zones would explain the increased γ and X-ray fl ux levels in 2009–2010, as well as the change in the γ/optical flux ratio during the outbursts peaks. The time delays of the X-ray flux changes after the γ, and optical ones are consistent with the proposed scenario.

Collaboration


Dive into the U. Bach's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

N. V. Efimova

Saint Petersburg State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge