U. Bortolozzo
University of Nice Sophia Antipolis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by U. Bortolozzo.
Physical Review Letters | 2009
A. Montina; U. Bortolozzo; S. Residori; F. T. Arecchi
A unidirectional optical oscillator is built by using a liquid crystal light valve that couples a pump beam with the modes of a nearly spherical cavity. For sufficiently high pump intensity, the cavity field presents complex spatiotemporal dynamics, accompanied by the emission of extreme waves and large deviations from the Gaussian statistics. We identify a mechanism of spatial symmetry breaking, due to a hypercycle-type amplification through the nonlocal coupling of the cavity field.
Applied Physics Letters | 2010
Armando Piccardi; U. Bortolozzo; S. Residori; Gaetano Assanto
Using a photoconductive light valve with nematic liquid crystals, we introduce a versatile platform for the excitation and routing of spatial optical solitons, with external beams controlling the whereabouts of the underlying all-optically induced waveguides and their spatial dynamics. Using this all-optical control of soliton trajectory, we demonstrate a NOR gate, an XNOR, and a Boolean half-adder.Using a photoconductive light valve with nematic liquid crystals, we introduce a versatile platform for the excitation and routing of spatial optical solitons, with external beams controlling the whereabouts of the underlying all-optically induced waveguides and their spatial dynamics. Using this all-optical control of soliton trajectory, we demonstrate a NOR gate, an XNOR, and a Boolean half-adder.
Journal of The Optical Society of America B-optical Physics | 2009
U. Bortolozzo; Jason Laurie; Sergey Nazarenko; S. Residori
In an optical experiment, we report a wave turbulence regime that, starting with weakly nonlinear waves with randomized phases, shows an inverse cascade of photons toward the lowest wavenumbers. We show that the cascade is induced by a six-wave resonant interaction process and is characterized by increasing nonlinearity. At low wavenumbers the nonlinearity becomes strong and leads to modulational instability developing into solitons, whose number is decreasing farther along the beam.
Optics Letters | 2010
A. Piccardi; U. Bortolozzo; S. Residori; Gaetano Assanto
We discuss the interactions between self-guided light beams and light-induced perturbations in a liquid crystal light valve. The model and data are in perfect agreement.
Journal of Physics D | 2008
U. Bortolozzo; S. Residori; J P Huignard
Photorefractive liquid crystal light valves (LCLVs) are hybrid devices that combine a nematic liquid crystal layer with a thin monocrystalline Bi12SiO20 (BSO) photorefractive crystal in the form of a cell wall. The device behaves as an optically addressed spatial light modulator, where the photoconductive layer is made of the BSO crystal. Differently from conventional types of spatial light modulators, usually working in retroreflective configuration, the photorefractive light valves work in transmission, thus allowing new applications related to the coupling of the optical beams when they pass through the liquid crystal layer. Here, we review some recent experiments of beam coupling in photorefractive LCLVs. After a characterization of the device in terms of its spatial resolution, which is related to the features of pattern formation in an optical feedback configuration, we present two-beam coupling and optical amplification in single pass experiments. Then, we develop a theoretical model by taking into account the Raman–Nath diffraction of the incoming beams over the thin liquid crystal layer. By using two or more light valves in cascade, we show, both experimentally and theoretically, that the two-wave mixing gain can be enhanced by the Talbot effect related to the multi-passage of the beams through the successive layers of the nematic liquid crystal. Finally, we show that self-pumped phase conjugation can be realized by placing the light valve in a tilted feedback configuration. In this case, the four-wave mixing is spontaneously created through the scattering of the signal beam onto the feedback induced grating.
Optics Letters | 2010
Stefano Bonora; U. Bortolozzo; S. Residori; R. Balu; P. V. Ashrit
We demonstrate the image conversion from mid-IR to near-IR (NIR) exploiting high-contrast optical switching in vanadium oxide thin-film layers. The intensity distribution of a mid-IR beam is converted to NIR wavelengths exploiting the strong reflectivity changes induced by optical pumping in the mid-IR. We show an experimental setup in which the radiation of a Tm-doped fiber laser at 1940 microm and a carbon dioxide at 10.6 microm has been converted to both 850 nm and 1064 nm. The resolution was 35 microm and was reached by using an inexpensive CCD camera. The sensitivity of the device increases linearly with sample temperature. We measured a threshold of 144 mW/cm(2), with a sample temperature of 62 degrees C.
Optics Letters | 2009
A. Piccardi; U. Bortolozzo; S. Residori; Gaetano Assanto
Liquid-crystal light valves can control the orientation of a nematic layer under the independent or combined action of applied voltage and impinging light intensity; hence, they offer a unique environment for the propagation of spatial optical solitons or nematicons. We demonstrate nematicon excitation, propagation, and steering in photoconductive light valves.
IEEE Photonics Technology Letters | 2010
Armando Piccardi; U. Bortolozzo; S. Residori; Gaetano Assanto
We excite spatial solitons by reorientational nonlinearity of the nematic liquid crystals, using a photoconductive light valve to implement an external light-driven control of their trajectories. Control spots provide deviations of the solitons and allow implementing various routing operations. We demonstrate 2-bit (4-output) and 3-bit (8-output) spatial demultiplexers and a continuously adjustable X/Y power-dependent junction.
Physics Reports | 2012
Jason Laurie; U. Bortolozzo; Sergey Nazarenko; S. Residori
We present a review of the latest developments in one-dimensional (1D) optical wave turbulence (OWT). Based on an original experimental setup that allows for the implementation of 1D OWT, we are able to show that an inverse cascade occurs through the spontaneous evolution of the nonlinear field up to the point when modulational instability leads to soliton formation. After solitons are formed, further interaction of the solitons among themselves and with incoherent waves leads to a final condensate state dominated by a single strong soliton. Motivated by the observations, we develop a theoretical description, showing that the inverse cascade develops through six-wave interaction, and that this is the basic mechanism of nonlinear wave coupling for 1D OWT. We describe theory, numerics and experimental observations while trying to incorporate all the different aspects into a consistent context. The experimental system is described by two coupled nonlinear equations, which we explore within two wave limits allowing for the expression of the evolution of the complex amplitude in a single dynamical equation. The long-wave limit corresponds to waves with wave numbers smaller than the electrical coherence length of the liquid crystal, and the opposite limit, when wave numbers are larger. We show that both of these systems are of a dual cascade type, analogous to two-dimensional (2D) turbulence, which can be described by wave turbulence (WT) theory, and conclude that the cascades are induced by a six-wave resonant interaction process. WT theory predicts several stationary solutions (non-equilibrium and thermodynamic) to both the long- and short-wave systems, and we investigate the necessary conditions required for their realization. Interestingly, the long-wave system is close to the integrable 1D nonlinear Schrodinger equation (NLSE) (which contains exact nonlinear soliton solutions), and as a result during the inverse cascade, nonlinearity of the system at low wave numbers becomes strong. Subsequently, due to the focusing nature of the nonlinearity, this leads to modulational instability (MI) of the condensate and the formation of solitons. Finally, with the aid of the probability density function (PDF) description of WT theory, we explain the coexistence and mutual interactions between solitons and the weakly nonlinear random wave background in the form of a wave turbulence life cycle (WTLC).
Optics Letters | 2009
U. Bortolozzo; S. Residori; J. P. Huignard
The large dispersive properties and the narrow frequency bandwidth of the two-wave mixing in a liquid-crystal light valve is used to realize an adaptive holographic interferometer in the Raman-Nath regime. We report experimental observation of picometer periodic displacements and estimate the theoretical signal-to-noise ratio and the minimum quantum-noise-limited detectable displacement.