Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where U. Oberlack is active.

Publication


Featured researches published by U. Oberlack.


Physical Review Letters | 2013

Limits on spin-dependent WIMP-nucleon cross sections from 225 live days of XENON100 data

E. Aprile; M. Alfonsi; K. Arisaka; F. Arneodo; C. Balan; L. Baudis; B. Bauermeister; A. Behrens; P. Beltrame; K. Bokeloh; Abbe Brown; E. Brown; G. Bruno; R. Budnik; João Cardoso; W. T. Chen; B. Choi; A.P. Colijn; H. Contreras; J. P. Cussonneau; M.P. Decowski; E. Duchovni; S. Fattori; A. D. Ferella; W. Fulgione; F. Gao; M. Garbini; C. Ghag; Karl-Ludwig Giboni; L. W. Goetzke

We present new experimental constraints on the elastic, spin-dependent WIMP-nucleon cross section using recent data from the XENON100 experiment, operated in the Laboratori Nazionali del Gran Sasso in Italy. An analysis of 224.6 live days×34 kg of exposure acquired during 2011 and 2012 revealed no excess signal due to axial-vector WIMP interactions with 129Xe and 131Xe nuclei. This leads to the most stringent upper limits on WIMP-neutron cross sections for WIMP masses above 6 GeV/c², with a minimum cross section of 3.5×10(-40) cm² at a WIMP mass of 45 GeV/c², at 90% confidence level.


Astroparticle Physics | 2011

Material screening and selection for XENON100

E. Aprile; K. Arisaka; F. Arneodo; A. Askin; L. Baudis; A. Behrens; K. Bokeloh; E. Brown; João Cardoso; B. Choi; D. Cline; S. Fattori; A. D. Ferella; Karl-Ludwig Giboni; A. Kish; C. W. Lam; J. Lamblin; R.F. Lang; K. E. Lim; J. A. M. Lopes; T. Marrodán Undagoitia; Y. Mei; A. J. Melgarejo Fernandez; K. Ni; U. Oberlack; S. E. A. Orrigo; E. Pantic; G. Plante; A. C. C. Ribeiro; R. Santorelli

Results of the extensive radioactivity screening campaign to identify materials for the construction of XENON100 are reported. This Dark Matter search experiment is operated underground at Laboratori Nazionali del Gran Sasso (LNGS), Italy. Several ultra sensitive High Purity Germanium detectors (HPGe) have been used for gamma ray spectrometry. Mass spectrometry has been applied for a few low mass plastic samples. Detailed tables with the radioactive contaminations of all screened samples are presented, together with the implications for XENON100.


Astroparticle Physics | 2014

Analysis of the XENON100 Dark Matter Search Data

E. Aprile; M. Alfonsi; K. Arisaka; F. Arneodo; C. Balan; L. Baudis; A. Behrens; P. Beltrame; K. Bokeloh; E. Brown; G. Bruno; R. Budnik; João Cardoso; W. T. Chen; B. Choi; D. Cline; H. Contreras; J. P. Cussonneau; M.P. Decowski; E. Duchovni; S. Fattori; A. D. Ferella; W. Fulgione; F. Gao; M. Garbini; Karl-Ludwig Giboni; L. W. Goetzke; C. Grignon; E. Gross; W. Hampel

The XENON100 experiment, situated in the Laboratori Nazionali del Gran Sasso, aims at the direct detection of dark matter in the form of weakly interacting massive particles (WIMPs), based on their interactions with xenon nuclei in an ultra low background dual-phase time projection chamber. This paper describes the general methods developed for the analysis of the XENON100 data. These methods have been used in the 100.9 and 224.6 live days science runs from which results on spin-independent elastic, spin-dependent elastic and inelastic WIMP-nucleon cross-sections have already been reported.


Journal of Physics G | 2014

Observation and applications of single-electron charge signals in the XENON100 experiment

E. Aprile; M. Alfonsi; K. Arisaka; F. Arneodo; C. Balan; L. Baudis; B. Bauermeister; A. Behrens; P. Beltrame; K. Bokeloh; Abbe Brown; E. Brown; S. Bruenner; G. Bruno; R. Budnik; João Cardoso; W. T. Chen; B. Choi; A. P. Colijn; H. Contreras; J. P. Cussonneau; M.P. Decowski; E. Duchovni; S. Fattori; A. D. Ferella; W. Fulgione; F. Gao; M. Garbini; C. Ghag; Karl-Ludwig Giboni

The XENON100 dark matter experiment uses liquid xenon in a time projection chamber (TPC) to measure xenon nuclear recoils resulting from the scattering of dark matter weakly interacting massive particles (WIMPs). In this paper, we report the observation of single-electron charge signals which are not related to WIMP interactions. These signals, which show the excellent sensitivity of the detector to small charge signals, are explained as being due to the photoionization of impurities in the liquid xenon and of the metal components inside the TPC. They are used as a unique calibration source to characterize the detector. We explain how we can infer crucial parameters for the XENON100 experiment: the secondary-scintillation gain, the extraction yield from the liquid to the gas phase and the electron drift velocity.


European Physical Journal C | 2015

Lowering the radioactivity of the photomultiplier tubes for the XENON1T dark matter experiment

E. Aprile; F. Agostini; M. Alfonsi; L. Arazi; K. Arisaka; F. Arneodo; M. Auger; C. Balan; P. Barrow; L. Baudis; B. Bauermeister; A. Behrens; P. Beltrame; Abbe Brown; E. Brown; S. Bruenner; G. Bruno; R. Budnik; Lukas Bütikofer; João Cardoso; Daniel Coderre; A. P. Colijn; H. Contreras; J. P. Cussonneau; M.P. Decowski; A. Di Giovanni; E. Duchovni; S. Fattori; A. D. Ferella; A. Fieguth

The low-background, VUV-sensitive 3-inch diameter photomultiplier tube R11410 has been developed by Hamamatsu for dark matter direct detection experiments using liquid xenon as the target material. We present the results from the joint effort between the XENON collaboration and the Hamamatsu company to produce a highly radio-pure photosensor (version R11410-21) for the XENON1T dark matter experiment. After introducing the photosensor and its components, we show the methods and results of the radioactive contamination measurements of the individual materials employed in the photomultiplier production. We then discuss the adopted strategies to reduce the radioactivity of the various PMT versions. Finally, we detail the results from screening 286 tubes with ultra-low background germanium detectors, as well as their implications for the expected electronic and nuclear recoil background of the XENON1T experiment.


Journal of Instrumentation | 2014

Conceptual design and simulation of a water Cherenkov muon veto for the XENON1T experiment

E. Aprile; F. Agostini; M. Alfonsi; K. Arisaka; F. Arneodo; M. Auger; C. Balan; P. Barrow; L. Baudis; B. Bauermeister; A. Behrens; P. Beltrame; K. Bokeloh; A. Breskin; Abbe Brown; E. Brown; S. Bruenner; G. Bruno; R. Budnik; João Cardoso; A. P. Colijn; H. Contreras; J. P. Cussonneau; M.P. Decowski; E. Duchovni; S. Fattori; A. D. Ferella; W. Fulgione; M. Garbini; C. Geis

XENON is a dark matter direct detection project, consisting of a time projection chamber (TPC) filled with liquid xenon as detection medium. The construction of the next generation detector, XENON1T, is presently taking place at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It aims at a sensitivity to spin-independent cross sections of 2 10-47 c 2 for WIMP masses around 50 GeV2, which requires a background reduction by two orders of magnitude compared to XENON100, the current generation detector. An active system that is able to tag muons and muon-induced backgrounds is critical for this goal. A water Cherenkov detector of ~ 10 m height and diameter has been therefore developed, equipped with 8 inch photomultipliers and cladded by a reflective foil. We present the design and optimization study for this detector, which has been carried out with a series of Monte Carlo simulations. The muon veto will reach very high detection efficiencies for muons (>99.5%) and showers of secondary particles from muon interactions in the rock (>70%). Similar efficiencies will be obtained for XENONnT, the upgrade of XENON1T, which will later improve the WIMP sensitivity by another order of magnitude. With the Cherenkov water shield studied here, the background from muon-induced neutrons in XENON1T is negligible.


Journal of Physics G | 2013

The neutron background of the XENON100 dark matter search experiment

E. Aprile; M. Alfonsi; K. Arisaka; F. Arneodo; C. Balan; L. Baudis; B. Bauermeister; A. Behrens; P. Beltrame; K. Bokeloh; Abbe Brown; E. Brown; G. Bruno; R. Budnik; João Cardoso; W. T. Chen; B. Choi; A.P. Colijn; H. Contreras; J. P. Cussonneau; M.P. Decowski; E. Duchovni; S. Fattori; A. D. Ferella; W. Fulgione; F. Gao; M. Garbini; C. Ghag; Karl-Ludwig Giboni; L. W. Goetzke

The XENON100 experiment, installed underground at the Laboratori Nazionali del Gran Sasso, aims to directly detect dark matter in the form of weakly interacting massive particles (WIMPs) via their elastic scattering off xenon nuclei. This paper presents a study on the nuclear recoil background of the experiment, taking into account neutron backgrounds from (α, n) reactions and spontaneous fission due to natural radioactivity in the detector and shield materials, as well as muon-induced neutrons. Based on Monte Carlo simulations and using measured radioactive contaminations of all detector components, we predict the nuclear recoil backgrounds for the WIMP search results published by the XENON100 experiment in 2011 and 2012, 0.11 events and 0.17 events, respectively, and conclude that they do not limit the sensitivity of the experiment.TheXENON100 experiment, installed underground at the LaboratoriNazionali del Gran Sasso, aims to directly detect dark matter in the form of weakly interacting massive particles (WIMPs) via their elastic scattering off xenon nuclei. This paper presents a study on the nuclear recoil background of the experiment, taking into account neutron backgrounds from (alpha, n) reactions and spontaneous fission due to natural radioactivity in the detector and shield materials, as well as muon-induced neutrons. Based on MonteCarlo simulations and using measured radioactive contaminations of all detector components, we predict the nuclear recoil backgrounds for the WIMP search results published by theXENON100 experiment in 2011 and 2012, 0.11(-0.04)(+0.08) events and 0.17(-0.07)(+0.12) events, respectively, and conclude that they do not limit the sensitivity of the experiment.

Collaboration


Dive into the U. Oberlack's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. Brown

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar

K. Arisaka

University of California

View shared research outputs
Top Co-Authors

Avatar

F. Arneodo

New York University Abu Dhabi

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge