Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where U. Thomas Meier is active.

Publication


Featured researches published by U. Thomas Meier.


Chromosoma | 2005

The many facets of H/ACA ribonucleoproteins.

U. Thomas Meier

The H/ACA ribonucleoproteins (RNPs) are known as one of the two major classes of small nucleolar RNPs. They predominantly guide the site-directed pseudouridylation of target RNAs, such as ribosomal and spliceosomal small nuclear RNAs. In addition, they process ribosomal RNA and stabilize vertebrate telomerase RNA. Taken together, the function of H/ACA RNPs is essential for ribosome biogenesis, pre-mRNA splicing, and telomere maintenance. Every cell contains 100–200 different species of H/ACA RNPs, each consisting of the same four core proteins and one function-specifying H/ACA RNA. Most of these RNPs reside in nucleoli and Cajal bodies and mediate the isomerization of specific uridines to pseudouridines. Catalysis of the reaction is mediated by the putative pseudouridylase NAP57 (dyskerin, Cbf5p). Unexpectedly, mutations in this housekeeping enzyme are the major determinants of the inherited bone marrow failure syndrome dyskeratosis congenita. This review details the many diverse functions of H/ACA RNPs, some yet to be uncovered, with an emphasis on the role of the RNP proteins. The multiple functions of H/ACA RNPs appear to be reflected in the complex phenotype of dyskeratosis congenita.


Journal of Cell Biology | 2004

In vivo kinetics of Cajal body components

Miroslav Dundr; Michael D. Hebert; Tatiana S. Karpova; David Stanek; Hongzi Xu; Karl B. Shpargel; U. Thomas Meier; Karla M. Neugebauer; A. Gregory Matera; Tom Misteli

Cajal bodies (CBs) are subnuclear domains implicated in small nuclear ribonucleoprotein (snRNP) biogenesis. In most cell types, CBs coincide with nuclear gems, which contain the survival of motor neurons (SMN) complex, an essential snRNP assembly factor. Here, we analyze the exchange kinetics of multiple components of CBs and gems in living cells using photobleaching microscopy. We demonstrate differences in dissociation kinetics of CB constituents and relate them to their functions. Coilin and SMN complex members exhibit relatively long CB residence times, whereas components of snRNPs, small nucleolar RNPs, and factors shared with the nucleolus have significantly shorter residence times. Comparison of the dissociation kinetics of these shared proteins from either the nucleolus or the CB suggests the existence of compartment-specific retention mechanisms. The dynamic properties of several CB components do not depend on their interaction with coilin because their dissociation kinetics are unaltered in residual nuclear bodies of coilin knockout cells. Photobleaching and fluorescence resonance energy transfer experiments demonstrate that coilin and SMN can interact within CBs, but their interaction is not the major determinant of their residence times. These results suggest that CBs and gems are kinetically independent structures.


The EMBO Journal | 2004

Architecture and assembly of mammalian H/ACA small nucleolar and telomerase ribonucleoproteins

Chen Wang; U. Thomas Meier

Mammalian H/ACA small nucleolar RNAs and telomerase RNA share common sequence and secondary structure motifs that form ribonucleoprotein particles (RNPs) with the same four core proteins, NAP57 (also dyskerin or in yeast Cbf5p), GAR1, NHP2, and NOP10. The assembly and molecular interactions of the components of H/ACA RNPs are unknown. Using in vitro transcription/translation in combination with immunoprecipitation of core proteins, UV‐crosslinking, and electrophoretic mobility shift assays, we demonstrate the following. NOP10 associates with NAP57 as a prerequisite for NHP2 binding. Although NHP2 on its own binds RNA nonspecifically, this NAP57–NOP10–NHP2 core trimer specifically recognizes H/ACA RNAs. GAR1 associates independently with NAP57 near the pseudouridylase core of mature H/ACA RNPs. In contrast to other RNPs whose assembly is initiated by protein–RNA interactions, the four H/ACA core proteins form a protein‐only particle that associates with H/ACA RNAs. Nonetheless, functional H/ACA snoRNPs assembled in cytosolic extracts are stable and do not exchange their RNA components, suggesting that new particle formation requires de novo synthesis.


Journal of Cell Biology | 2006

Stepwise RNP assembly at the site of H/ACA RNA transcription in human cells

Xavier Darzacq; Nupur Kittur; Sujayita Roy; Yaron Shav-Tal; Robert H. Singer; U. Thomas Meier

Mammalian H/ACA RNPs are essential for ribosome biogenesis, premessenger RNA splicing, and telomere maintenance. These RNPs consist of four core proteins and one RNA, but it is not known how they assemble. By interrogating the site of H/ACA RNA transcription, we dissected their biogenesis in single cells and delineated the role of the non-core protein NAF1 in the process. NAF1 and all of the core proteins except GAR1 are recruited to the site of transcription. NAF1 binds one of the core proteins, NAP57, and shuttles between nucleus and cytoplasm. Both proteins are essential for stable H/ACA RNA accumulation. NAF1 and GAR1 bind NAP57 competitively, suggesting a sequential interaction. Our analyses indicate that NAF1 binds NAP57 and escorts it to the nascent H/ACA RNA and that GAR1 then replaces NAF1 to yield mature H/ACA RNPs in Cajal bodies and nucleoli.


Journal of Biological Chemistry | 1997

Specific interaction between casein kinase 2 and the nucleolar protein Nopp140

Dongxia Li; U. Thomas Meier; Grazyna Dobrowolska; Edwin G. Krebs

Casein kinase 2 (CK2) is a multifunctional second messenger-independent protein serine/threonine kinase that phosphorylates many different proteins. To understand the function and regulation of this enzyme, biochemical methods were used to search for CK2-interacting proteins. Using immobilized glutathione S-transferase fusion proteins of CK2, the nucleolar protein Nopp140 was identified as a CK2-associated protein. It was found that Nopp140 binds primarily to the CK2 regulatory subunit, β. The possible in vivo association of Nopp140 with CK2 was also suggested from a coimmunoprecipitation experiment in which Nopp140 was detected in immunoprecipitates of CK2 prepared from cell extracts. Further studies using an overlay technique with radiolabeled CK2 as a probe revealed a direct CK2-Nopp140 interaction. Using deletion mutants of CK2β subunits, the binding region of the CK2β subunit to Nopp140 has been mapped. It was found that the NH2-terminal 20 amino acids of CK2β are involved. Since Nopp140 has been identified as a nuclear localization sequence-binding protein and has been shown to shuttle between the cytoplasm and the nucleus, the finding of a CK2-Nopp140 interaction could shed light on our understanding of the function and regulation of CK2 and Nopp140.


Chromosoma | 1997

A class of nonribosomal nucleolar components is located in chromosome periphery and in nucleolus-derived foci during anaphase and telophase

Miroslav Dundr; U. Thomas Meier; Nancy Lewis; David Rekosh; Marie-Louise Hammarskjold; Mark O. J. Olson

The subcellular location of several nonribosomal nucleolar proteins was examined at various stages of mitosis in synchronized mammalian cell lines including HeLa, 3T3, COS-7 and HIV-1 Rev-expressing CMT3 cells. Nucleolar proteins B23, fibrillarin, nucleolin and p52 as well as U3 snoRNA were located partially in the peripheral regions of chromosomes from prometaphase to early telophase. However, these proteins were also found in large cytoplasmic particles, 1–2 μm in diameter, termed nucleolus-derived foci (NDF). The NDF reached maximum numbers (as many as 100 per cell) during mid- to late anaphase, after which their number declined to a few or none during late telophase. The decline in the number of NDF approximately coincided with the appearance of prenucleolar bodies and reforming nucleoli. The HIV-1 Rev protein and a mutant Rev protein defective in its nuclear export signal were also found in the NDF. The mutant Rev protein precisely followed the pattern of localization of the above nucleolar proteins, whereas the wild-type Rev did not enter nuclei until G1 phase. The nucleolar shuttling phosphoprotein Nopp 140 did not follow the above pattern of localization during mitosis: it dispersed in the cytoplasm from prometaphase through early telophase and was not found in the NDF. Although the NDF and mitotic coiled bodies disappeared from the cytoplasm at approximately the same time during mitosis, protein B23 was not found in mitotic coiled bodies, nor was p80 coilin present in the NDF. These results suggest that a class of proteins involved in preribosomal RNA processing associate with chromosome periphery and with NDF as part of a system to conserve and deliver preexisting components to reforming nucleoli during mitosis.


Analytical Biochemistry | 1985

Assay of Mephenytoin Metabolism in Human Liver Microsomes by High-Performance Liquid Chromatography

U. Thomas Meier; Thomas Kronbach; Urs A. Meyer

The metabolism of mephenytoin to its two major metabolites, 4-OH-mephenytoin (4-OH-M) and 5-phenyl-5-ethylhydantoin (nirvanol) was studied in human liver microsomes by a reversed phase HPLC assay. Because of preferential hydroxylation of S-mephenytoin in vivo, microsomes (5-300 micrograms protein) were incubated separately with S- and R-mephenytoin. After addition of phenobarbital as internal standard, the incubation mixture was extracted with dichloromethane. The residue remaining after evaporation was dissolved in water and injected on a 60 X 4.6-mm reversed-phase column (5 mu-C-18). Elution with acetonitrile/methanol/sodium perchlorate (20 mM, pH 2.5) led to almost baseline separation of mephenytoin, metabolites, and phenobarbital. Quantitation was performed by uv-absorption at 204 nm by the internal standard method. Propylene glycol was found to be the best solvent for mephenytoin, but inhibited the reaction noncompetitively. 4-OH-M and nirvanol could be detected at concentrations in the incubation mixture as low as 40 and 80 nM, respectively. The rates of metabolite formation were linear with time and protein concentration. The reaction was found to be substrate stereoselective. At substrate concentrations below 0.5 mM S-mephenytoin was preferentially hydroxylated to 4-OH-M, while R-mephenytoin was preferentially demethylated to nirvanol at all substrate concentrations tested (25-1600 microM). These data provide a mechanistic explanation for the stereospecific pharmacokinetics in vivo. The dependence of both metabolic relations on NADPH and the inhibition by CO suggest that they are mediated by cytochrome P-450-type monooxygenases.(ABSTRACT TRUNCATED AT 250 WORDS)


RNA | 2009

SHQ1 is required prior to NAF1 for assembly of H/ACA small nucleolar and telomerase RNPs

Petar N. Grozdanov; Sujayita Roy; Nupur Kittur; U. Thomas Meier

Assembly of H/ACA RNPs in yeast is aided by at least two accessory factors, Naf1p and Shq1p. Although the function of Naf1p and its human ortholog NAF1 has been delineated in detail, that of Shq1p and its putative human ortholog SHQ1 remains obscure. We demonstrate that SHQ1 indeed functions in the biogenesis of human H/ACA RNPs and we dissect its mechanism of action. Like NAF1, SHQ1 binds the major H/ACA core protein and pseudouridine synthase NAP57 (aka dyskerin) but precedes the assembly role of NAF1 at nascent H/ACA RNAs because the interaction of SHQ1 with NAP57 in vivo and in vitro precludes that of NAF1 and of the other H/ACA core proteins that are present at the sites of H/ACA RNA transcription. The N-terminal heat shock protein 20-like CS domain of SHQ1 is dispensable for NAP57 binding. Consistent with its role as an assembly factor, SHQ1 localizes to the nucleoplasm and is excluded from nucleoli and Cajal bodies, the sites of mature H/ACA RNPs. In an in vitro assembly system of functional H/ACA RNPs that is dependent on NAF1, excess recombinant SHQ1 interferes with assembly. Importantly, knockdown of cellular SHQ1 prevents accumulation of a newly synthesized H/ACA reporter RNA and generally reduces the levels of endogenous H/ACA RNAs including telomerase RNA. In summary, the sequential action of SHQ1 and NAF1 is required for functional assembly of H/ACA RNPs in vivo and in vitro. This step-wise process could serve as an efficient means of quality control during H/ACA RNP assembly.


Clinical Pharmacology & Therapeutics | 1985

Mephenytoin hydroxylation polymorphism: Characterization of the enzymatic deficiency in liver microsomes of poor metabolizers phenotyped in vivo

U. Thomas Meier; Pierre Dayer; Pierre‐Jean Malè; Thomas Kronbach; Urs A. Meyer

The rate of 4‐hydroxylation and of N‐demethylation of S‐ and R‐mephenytoin was determined in liver microsomes of 13 extensive (EM) and two poor (PM) metabolizers of mephenytoin. Detailed kinetic studies were performed in microsomes of eight EMs and the two PMs. Microsomal mephenytoin metabolism in PMs was characterized by an increased Km (150.6 and 180.6 vs. a mean [± SD] 37.8 ± 9.6 µmol/L S‐mephenytoin in 8 EMs), a decreased maximum rate of metabolism for S‐mephenytoin hydroxylation (0.76 and 0.69 vs 4.85 ± 1.65 nmol 4‐hydroxymephenytoin per milligram protein per hour), and loss of stereoselectivity for the hydroxylation of the R‐ and S‐enantiomers of mephenytoin (R/S ratio: 1.10 and 0.76 vs. 0.11 ± 0.04 in 13 EMs). The formation of 4‐OH‐mephenytoin from ifc‐mephenytoin and the demethylation reaction remained unaffected. These results support our hypothesis that the mephenytoin polymorphism is caused by a partial or complete absence or inactivity of a cytochrome P‐450 isozyme with high affinity for S‐mephenytoin.


RNA | 2012

Mechanism of the AAA+ ATPases pontin and reptin in the biogenesis of H/ACA RNPs

Rosario Machado-Pinilla; Dominique Liger; Nicolas Leulliot; U. Thomas Meier

The AAA+ ATPases pontin and reptin function in a staggering array of cellular processes including chromatin remodeling, transcriptional regulation, DNA damage repair, and assembly of macromolecular complexes, such as RNA polymerase II and small nucleolar (sno) RNPs. However, the molecular mechanism for all of these AAA+ ATPase associated activities is unknown. Here we document that, during the biogenesis of H/ACA RNPs (including telomerase), the assembly factor SHQ1 holds the pseudouridine synthase NAP57/dyskerin in a viselike grip, and that pontin and reptin (as components of the R2TP complex) are required to pry NAP57 from SHQ1. Significantly, the NAP57 domain captured by SHQ1 harbors most mutations underlying X-linked dyskeratosis congenita (X-DC) implicating the interface between the two proteins as a target of this bone marrow failure syndrome. Homing in on the essential first steps of H/ACA RNP biogenesis, our findings provide the first insight into the mechanism of action of pontin and reptin in the assembly of macromolecular complexes.

Collaboration


Dive into the U. Thomas Meier's collaboration.

Top Co-Authors

Avatar

Gregory Zapantis

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edward J. Nejat

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Petar N. Grozdanov

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Alex J. Polotsky

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eli A. Rybak

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Michael J. Szmyga

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Nanette Santoro

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge