Udda Lundqvist
Lund University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Udda Lundqvist.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Takao Komatsuda; Congfen He; Perumal Azhaguvel; Hiroyuki Kanamori; Dragan Perovic; Nils Stein; Andreas Graner; Thomas Wicker; Akemi Tagiri; Udda Lundqvist; Tatsuhito Fujimura; Makoto Matsuoka; Takashi Matsumoto; Masahiro Yano
Increased seed production has been a common goal during the domestication of cereal crops, and early cultivators of barley (Hordeum vulgare ssp. vulgare) selected a phenotype with a six-rowed spike that stably produced three times the usual grain number. This improved yield established barley as a founder crop for the Near Eastern Neolithic civilization. The barley spike has one central and two lateral spikelets at each rachis node. The wild-type progenitor (H. vulgare ssp. spontaneum) has a two-rowed phenotype, with additional, strictly rudimentary, lateral rows; this natural adaptation is advantageous for seed dispersal after shattering. Until recently, the origin of the six-rowed phenotype remained unknown. In the present study, we isolated vrs1 (six-rowed spike 1), the gene responsible for the six-rowed spike in barley, by means of positional cloning. The wild-type Vrs1 allele (for two-rowed barley) encodes a transcription factor that includes a homeodomain with a closely linked leucine zipper motif. Expression of Vrs1 was strictly localized in the lateral-spikelet primordia of immature spikes, suggesting that the VRS1 protein suppresses development of the lateral rows. Loss of function of Vrs1 resulted in complete conversion of the rudimentary lateral spikelets in two-rowed barley into fully developed fertile spikelets in the six-rowed phenotype. Phylogenetic analysis demonstrated that the six-rowed phenotype originated repeatedly, at different times and in different regions, through independent mutations of Vrs1.
Nature Genetics | 2011
Luke Ramsay; Jordi Comadran; Arnis Druka; David Marshall; W. T. B. Thomas; Malcolm Macaulay; Katrin MacKenzie; Craig G. Simpson; John L. Fuller; Nicola Bonar; Patrick M. Hayes; Udda Lundqvist; J. D. Franckowiak; Timothy J. Close; Gary J. Muehlbauer; Robbie Waugh
The domestication of cereals has involved common changes in morphological features, such as seed size, seed retention and modification of vegetative and inflorescence architecture that ultimately contributed to an increase in harvested yield. In barley, this process has resulted in two different cultivated types, two-rowed and six-rowed forms, both derived from the wild two-rowed ancestor, with archaeo-botanical evidence indicating the origin of six-rowed barley early in the domestication of the species, some 8,600–8,000 years ago. Variation at SIX-ROWED SPIKE 1 (VRS1) is sufficient to control this phenotype. However, phenotypes imposed by VRS1 alleles are modified by alleles at the INTERMEDIUM-C (INT-C) locus. Here we show that INT-C is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1 (TB1) and identify 17 coding mutations in barley TB1 correlated with lateral spikelet fertility phenotypes.
Plant Physiology | 2011
Arnis Druka; J. D. Franckowiak; Udda Lundqvist; Nicola Bonar; Jill Alexander; Kelly Houston; Slobodanka Radovic; Fahimeh Shahinnia; Vera Vendramin; Michele Morgante; Nils Stein; Robbie Waugh
Since the early 20th century, barley (Hordeum vulgare) has been a model for investigating the effects of physical and chemical mutagens and for exploring the potential of mutation breeding in crop improvement. As a consequence, extensive and well-characterized collections of morphological and developmental mutants have been assembled that represent a valuable resource for exploring a wide range of complex and fundamental biological processes. We constructed a collection of 881 backcrossed lines containing mutant alleles that induce a majority of the morphological and developmental variation described in this species. After genotyping these lines with up to 3,072 single nucleotide polymorphisms, comparison to their recurrent parent defined the genetic location of 426 mutant alleles to chromosomal segments, each representing on average <3% of the barley genetic map. We show how the gene content in these segments can be predicted through conservation of synteny with model cereal genomes, providing a route to rapid gene identification.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Shakhira Zakhrabekova; Simon P. Gough; Ilka Braumann; André H. Müller; Joakim Lundqvist; Katharina Ahmann; Christoph Dockter; Izabela Matyszczak; Marzena Kurowska; Arnis Druka; Robbie Waugh; Andreas Graner; Nils Stein; Burkhard Steuernagel; Udda Lundqvist; Mats Hansson
Time to flowering has an important impact on yield and has been a key trait in the domestication of crop plants and the spread of agriculture. In 1961, the cultivar Mari (mat-a.8) was the very first induced early barley (Hordeum vulgare L.) mutant to be released into commercial production. Mari extended the range of two-row spring barley cultivation as a result of its photoperiod insensitivity. Since its release, Mari or its derivatives have been used extensively across the world to facilitate short-season adaptation and further geographic range extension. By exploiting an extended historical collection of early-flowering mutants of barley, we identified Praematurum-a (Mat-a), the gene responsible for this key adaptive phenotype, as a homolog of the Arabidopsis thaliana circadian clock regulator Early Flowering 3 (Elf3). We characterized 87 induced mat-a mutant lines and identified >20 different mat-a alleles that had clear mutations leading to a defective putative ELF3 protein. Expression analysis of HvElf3 and Gigantea in mutant and wild-type plants demonstrated that mat-a mutations disturb the flowering pathway, leading to the early phenotype. Alleles of Mat-a therefore have important and demonstrated breeding value in barley but probably also in many other day-length-sensitive crop plants, where they may tune adaptation to different geographic regions and climatic conditions, a critical issue in times of global warming.
Radiation Botany | 1974
L. Ehrenberg; Siv Osterman-Golkar; Deepika Singh; Udda Lundqvist
The mutagenic activity in barley kernels of trimethyl phosphate, ethylene chloride, and ethylene bromide was studied against the background of the reaction kinetics of the compounds, and in comparison with other methylating (dimethyl sulfate, methyl methanesulfonate, methyl bromide) and β-chloroethylating (2-chloroethyl methanesulfonate) agents. The methylating compounds have about the same substrate constant (s≈0·9) but their reactivity varies by a factor 104. Within this range, the mutagenic and killing effectiveness, i.e., effect at equal dose, is proportional to the rate of reaction with a given nucleophile. The mutagenic effectiveness of β-halogenoethylating agents, the reactivities of which are strongly decreased through the influence of the halogen atom, is about 100 times greater than expected from the frequency of initial reactions with DNA. An amplification operates, mainly through formation of reactive half-mustards in reactions with thiols and amines, although a contribution from inter-strand cross-links cannot be excluded. The great mutagenic effectiveness of ethylene halides parallels an efficient induction of DNA single-strand breaks and chromosomal aberrations.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Ravi Koppolu; Nadia Anwar; Shun Sakuma; Akemi Tagiri; Udda Lundqvist; Twan Rutten; Christiane Seiler; Axel Himmelbach; Ruvini Ariyadasa; Helmy M. Youssef; Nils Stein; Nese Sreenivasulu; Takao Komatsuda; Thorsten Schnurbusch
Inflorescence architecture of barley (Hordeum vulgare L.) is common among the Triticeae species, which bear one to three single-flowered spikelets at each rachis internode. Triple spikelet meristem is one of the unique features of barley spikes, in which three spikelets (one central and two lateral spikelets) are produced at each rachis internode. Fertility of the lateral spikelets at triple spikelet meristem gives row-type identity to barley spikes. Six-rowed spikes show fertile lateral spikelets and produce increased grain yield per spike, compared with two-rowed spikes with sterile lateral spikelets. Thus, far, two loci governing the row-type phenotype were isolated in barley that include Six-rowed spike1 (Vrs1) and Intermedium-C. In the present study, we isolated Six-rowed spike4 (Vrs4), a barley ortholog of the maize (Zea mays L.) inflorescence architecture gene RAMOSA2 (RA2). Eighteen coding mutations in barley RA2 (HvRA2) were specifically associated with lateral spikelet fertility and loss of spikelet determinacy. Expression analyses through mRNA in situ hybridization and microarray showed that Vrs4 (HvRA2) controls the row-type pathway through Vrs1 (HvHox1), a negative regulator of lateral spikelet fertility in barley. Moreover, Vrs4 may also regulate transcripts of barley SISTER OF RAMOSA3 (HvSRA), a putative trehalose-6-phosphate phosphatase involved in trehalose-6-phosphate homeostasis implicated to control spikelet determinacy. Our expression data illustrated that, although RA2 is conserved among different grass species, its down-stream target genes appear to be modified in barley and possibly other species of tribe Triticeae.
Plant Physiology | 2014
Christoph Dockter; Damian Gruszka; Ilka Braumann; Arnis Druka; Ilze Druka; J. D. Franckowiak; Simon P. Gough; Anna Janeczko; Marzena Kurowska; Joakim Lundqvist; Udda Lundqvist; Marek Marzec; Izabela Matyszczak; André H. Müller; Jana Oklestkova; Burkhard Schulz; Shakhira Zakhrabekova; Mats Hansson
Historic barley short-culm mutants deficient in brassinosteroid genes are attractive targets for development of lodging-resistant crop plants. Reduced plant height and culm robustness are quantitative characteristics important for assuring cereal crop yield and quality under adverse weather conditions. A very limited number of short-culm mutant alleles were introduced into commercial crop cultivars during the Green Revolution. We identified phenotypic traits, including sturdy culm, specific for deficiencies in brassinosteroid biosynthesis and signaling in semidwarf mutants of barley (Hordeum vulgare). This set of characteristic traits was explored to perform a phenotypic screen of near-isogenic short-culm mutant lines from the brachytic, breviaristatum, dense spike, erectoides, semibrachytic, semidwarf, and slender dwarf mutant groups. In silico mapping of brassinosteroid-related genes in the barley genome in combination with sequencing of barley mutant lines assigned more than 20 historic mutants to three brassinosteroid-biosynthesis genes (BRASSINOSTEROID-6-OXIDASE, CONSTITUTIVE PHOTOMORPHOGENIC DWARF, and DIMINUTO) and one brassinosteroid-signaling gene (BRASSINOSTEROID-INSENSITIVE1 [HvBRI1]). Analyses of F2 and M2 populations, allelic crosses, and modeling of nonsynonymous amino acid exchanges in protein crystal structures gave a further understanding of the control of barley plant architecture and sturdiness by brassinosteroid-related genes. Alternatives to the widely used but highly temperature-sensitive uzu1.a allele of HvBRI1 represent potential genetic building blocks for breeding strategies with sturdy and climate-tolerant barley cultivars.
Journal of Experimental Botany | 2012
Takahisa Yuo; Yuko Yamashita; Hiroyuki Kanamori; Takashi Matsumoto; Udda Lundqvist; Kazuhiro Sato; Masahiko Ichii; Stephen A. Jobling; Shin Taketa
The awn, an apical extension from the lemma of the spikelet, plays important roles in seed dispersal, burial, and photosynthesis. Barley typically has long awns, but short-awn variants exist. The short awn 2 (lks2) gene, which produces awns about 50% shorter than normal, is a natural variant that is restricted to Eastern Asia. Positional cloning revealed that Lks2 encodes a SHI-family transcription factor. Allelism tests showed that lks2 is allelic to unbranched style 4 (ubs4) and breviaristatum-d (ari-d), for which the phenotypes are very short awn and sparse stigma hairs. The gene identity was validated by 25 mutant alleles with lesions in the Lks2 gene. Of these, 17 affected either or both conserved regions: the zinc-binding RING-finger motif and the IGGH domain. Lks2 is highly expressed in awns and pistils. Histological observations of longitudinal awn sections showed that the lks2 short-awn phenotype resulted from reduced cell number. Natural variants of lks2 were classified into three types, but all shared a single-nucleotide polymorphism (SNP) that causes a proline-to-leucine change at position 245 in the IGGH domain. All three lks2 natural variants were regarded as weak alleles because their awn and pistil phenotypes are mild compared with those of the 25 mutant alleles. Natural variants of lks2 found in the east of China and the Himalayas had considerably different sequences in the regions flanking the critical SNP, suggesting independent origins. The available results suggest that the lks2 allele might have a selective advantage in the adaptation of barley to high-precipitation areas of Eastern Asia.
Genetics | 2015
Naser Poursarebani; Tina Seidensticker; Ravi Koppolu; Corinna Trautewig; Piotr Gawroński; Federica Bini; Geetha Govind; Twan Rutten; Shun Sakuma; Akemi Tagiri; Gizaw M. Wolde; Helmy M. Youssef; Abdulhamit Battal; Stefano Ciannamea; Tiziana Fusca; Thomas Nussbaumer; Carlo Pozzi; A. Börner; Udda Lundqvist; Takao Komatsuda; Silvio Salvi; Roberto Tuberosa; Cristobal Uauy; Nese Sreenivasulu; Laura Rossini; Thorsten Schnurbusch
Inflorescences of the tribe Triticeae, which includes wheat (Triticum sp. L.) and barley (Hordeum vulgare L.) are characterized by sessile spikelets directly borne on the main axis, thus forming a branchless spike. ‘Compositum-Barley’ and tetraploid ‘Miracle-Wheat’ (T. turgidum convar. compositum (L.f.) Filat.) display noncanonical spike-branching in which spikelets are replaced by lateral branch-like structures resembling small-sized secondary spikes. As a result of this branch formation ‘Miracle-Wheat’ produces significantly more grains per spike, leading to higher spike yield. In this study, we first isolated the gene underlying spike-branching in ‘Compositum-Barley,’ i.e., compositum 2 (com2). Moreover, we found that COM2 is orthologous to the branched headt (bht) locus regulating spike branching in tetraploid ‘Miracle-Wheat.’ Both genes possess orthologs with similar functions in maize BRANCHED SILKLESS 1 (BD1) and rice FRIZZY PANICLE/BRANCHED FLORETLESS 1 (FZP/BFL1) encoding AP2/ERF transcription factors. Sequence analysis of the bht locus in a collection of mutant and wild-type tetraploid wheat accessions revealed that a single amino acid substitution in the DNA-binding domain gave rise to the domestication of ‘Miracle-Wheat.’ mRNA in situ hybridization, microarray experiments, and independent qRT-PCR validation analyses revealed that the branch repression pathway in barley is governed through the spike architecture gene Six-rowed spike 4 regulating COM2 expression, while HvIDS1 (barley ortholog of maize INDETERMINATE SPIKELET 1) is a putative downstream target of COM2. These findings presented here provide new insights into the genetic basis of spike architecture in Triticeae, and have disclosed new targets for genetic manipulations aiming at boosting wheat’s yield potential.
Nature Genetics | 2017
Helmy M. Youssef; Kai Eggert; Ravi Koppolu; Ahmad M. Alqudah; Naser Poursarebani; Arash Fazeli; Shun Sakuma; Akemi Tagiri; Twan Rutten; Geetha Govind; Udda Lundqvist; Andreas Graner; Takao Komatsuda; Nese Sreenivasulu; Thorsten Schnurbusch
Plant architecture has clear agronomic and economic implications for crops such as wheat and barley, as it is a critical factor for determining grain yield. Despite this, only limited molecular information is available about how grain-bearing inflorescences, called spikes, are formed and maintain their regular, distichous pattern. Here we elucidate the molecular and hormonal role of Six-rowed spike 2 (Vrs2), which encodes a SHORT INTERNODES (SHI) transcriptional regulator during barley inflorescence and shoot development. We show that Vrs2 is specifically involved in floral organ patterning and phase duration by maintaining hormonal homeostasis and gradients during normal spike development and similarly influences plant stature traits. Furthermore, we establish a link between the SHI protein family and sucrose metabolism during organ growth and development that may have implications for deeper molecular insights into inflorescence and plant architecture in crops.