Udo Trautmann
University of Erlangen-Nuremberg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Udo Trautmann.
American Journal of Medical Genetics Part A | 2006
Anita Rauch; Juliane Hoyer; Sabine Guth; Christiane Zweier; Cornelia Kraus; Christian F. W. Becker; Martin Zenker; Ulrike Hüffmeier; Christian Thiel; Franz Rüschendorf; Peter Nürnberg; André Reis; Udo Trautmann
The underlying cause of mental retardation remains unknown in up to 80% of patients. As chromosomal aberrations are the most common known cause of mental retardation, several new methods based on FISH, PCR, and array techniques have been developed over recent years to increase detection rate of subtle aneusomies initially of the gene rich subtelomeric regions, but nowadays also genome wide. As the reported detection rates vary widely between different reports and in order to compare the diagnostic yield of various investigations, we analyzed the diagnostic yield of conventional karyotyping, subtelomeric screening, molecular karyotyping, X‐inactivation studies, and dysmorphological evaluation with targeted laboratory testing in unselected patients referred for developmental delay or mental retardation to our cytogenetic laboratory (n = 600) and to our genetic clinic (n = 570). In the cytogenetic group, 15% of patients showed a disease‐related aberration, while various targeted analyses after dysmorphological investigation led to a diagnosis in about 20% in the genetic clinic group. When adding the patients with a cytogenetic aberration to the patient group seen in genetic clinic, an etiological diagnosis was established in about 40% of the combined study group. A conventional cytogenetic diagnosis was present in 16% of combined patients and a microdeletion syndrome was diagnosed in 5.3%, while subtelomeric screening revealed only 1.3% of causes. Molecular karyotyping with a 10 K SNP array in addition revealed 5% of underlying causes, but 29% of all diagnoses would have been detectable by molecular karyotyping. In those patients without a clear diagnosis, 5.6% of mothers of affected boys showed significant (>95%) skewing of X‐inactivation suggesting X‐linked mental retardation. The most common diagnoses with a frequency of more than 0.5% were Down syndrome (9.2%), common microdeletion 22q11.2 (2.4%), Williams–Beuren syndrome (1.3%), Fragile‐X syndrome (1.2%), Cohen syndrome (0.7%), and monosomy 1p36.3 (0.6%). From our data, we suggest the following diagnostic procedure in patients with unexplained developmental delay or mental retardation: (1) Clinical/dysmorphological investigation with respective targeted analyses; (2) In the remaining patients without an etiological diagnosis, we suggest conventional karyotyping, X‐inactivation screening in mothers of boys, and molecular karyotyping, if available. If molecular karyotyping is not available, subtelomeric screening should be performed.
Journal of Medical Genetics | 2004
Anita Rauch; Franz Rüschendorf; J Huang; Udo Trautmann; Christian F. W. Becker; Christian Thiel; K W Jones; André Reis; Peter Nürnberg
Background: Chromosomal imbalances are a major cause of developmental defects as well as cancer and often constitute the key in identification of novel disease related genes. Classical cytogenetic methods are limited in resolution and dependent on highly skilled labour, while methods with higher resolution, based on molecular cytogenetics approaches such as matrix CGH, are not widely available. Methods: We have developed and evaluated a method we term “molecular karyotyping”, using readily available and easy to handle oligonucleotide arrays originally designed for parallel genomewide analysis of over 10 000 SNPs. We show that we can easily and reliably detect unbalanced chromosomal aberrations of various sizes from as little as 250 ng of DNA on a single microarray, based on fluorescence intensity information from clusters of SNPs. Results: We determined the resolution of this method through analysis of 20 trios with 21 previously confirmed subtle aberrations sizing between 0.2 and 13 Mb. Duplications and deletions of at least 5 Mb in size were reliably detectable, but detection of smaller aberrations was dependent on the number of SNPs they contained, thus seven of 10 different deletions analysed, with sizes ranging from 0.2 to 3.7 Mb, were not detectable due to insufficient SNP densitiy in the respective region. Conclusions: Deduction of reliable cut off levels for array peaks in our series of well characterised patients allows the use of the GeneChip Mapping 10K SNP array for performing rapid molecular karyotyping from small amounts of DNA for the detection of even subtle deletions and duplications with high sensitivity and specificity.
Journal of Medical Genetics | 2010
Ralf Rauch; Michael Hofbeck; Christiane Zweier; Andreas Koch; Stefan Zink; Udo Trautmann; Juliane Hoyer; Renate Kaulitz; Helmut Singer; Anita Rauch
Background Tetralogy of Fallot (ToF), the most frequent cyanotic congenital heart disease, is associated with a wide range of intra- and extracardiac phenotypes. In order to get further insight into genotype–phenotype correlation, a large cohort of 230 unselected patients with ToF was comprehensively investigated. Methods and results 230 patients with ToF were studied by karyotyping, comprehensive 22q11.2 deletion testing and sequencing of TBX1, NKX2.5 and JAG1, as well as molecular karyotyping in selected patients. Pathogenic genetic aberrations were found in 42 patients (18%), with 22q11.2 deletion as the most common diagnosis (7.4%), followed by trisomy 21 (5.2%) and other chromosomal aberrations or submicroscopic copy number changes (3%). Mutations in JAG1 were detected in three patients with Alagille syndrome (1.3%), while NKX2.5 mutations were seen in two patients with non-syndromic ToF (0.9%). One patient showed a recurrent polyalanine stretch elongation within TBX1 which represents a true mutation resulting in loss of transcriptional activity due to cytoplasmatic protein aggregation. Conclusion This study shows that 22q11.2 deletion represents the most common known cause of ToF, and that the associated cardiac phenotype is distinct for obstruction of the proximal pulmonary artery, hypoplastic central pulmonary arteries and subclavian artery anomalies. Atrioventricular septal defect associated with ToF is very suggestive of trisomy 21 and almost excludes 22q11.2 deletion. We report a further patient with a recurrent polyalanine stretch elongation within TBX1 and for the first time link TBX1 cytoplasmatic protein aggregation to congenital heart defects.
British Journal of Haematology | 1994
Johann Greil; Martin Gramatzki; Renate Burger; Rolf Marschalek; Markus Peltner; Udo Trautmann; Thomas E. Hansen-Hagge; Claus R. Bartram; Georg H. Fey; Klemens Stehr; Jörn D. Beck
Summary A cell line, designated SEM, was established from the peripheral blood of a 5‐year‐old girl in relapse with acute lymphoblastic leukaemia (ALL). Both the lymphoblasts of the patient and the cells of the cell line SEM showed the t(4:11) chromosomal rearrangement. The analysis of the immunophenotype of the SEM cell line revealed the B‐cell differentiation antigens CD19, CD22 and CDw75 in the absence of CD20. CD24 and immunoglobulin expression. Besides B‐lineage antigens. SEM cells were positive for the myeloid antigens CD13, CD15, CD33 and CDw65. Immunogenotypic analysis of SEM cells showed a monoclonal rearrangement of immunoglobulin heavy‐chain (IgH), T‐cell receptor (TCR) γ and δ genes. Addition of interleukin (IL)‐7 promoted the growth of the patients lymphoblasts in culture and enhanced the proliferation of SEM cells. The SEM cells also express messenger RNA (mRNA) for the IL‐7 receptor (IL‐7R), but no evidence for autocrine production of IL‐7 by the cell line was found. Addition of IL‐4, tumour necrosis factor (TNF)‐α, interferon (IFN)‐α, or IFN‐γ resulted in a profound inhibition of SEM growth. Thus, these cytokines may have important growth regulatory activities for biphenotypic leukaemic ALL cells.
Journal of Medical Genetics | 2007
Juliane Hoyer; Alexander Dreweke; Christian F. W. Becker; Ina Göhring; Christian Thiel; Maarit Peippo; Ralf Rauch; Michael Hofbeck; Udo Trautmann; Christiane Zweier; Martin Zenker; Ulrike Hüffmeier; Cornelia Kraus; Arif B. Ekici; Franz Rüschendorf; Peter Nürnberg; André Reis; Anita Rauch
Background: Using array techniques, it was recently shown that about 10% of patients with mental retardation of unknown origin harbour cryptic chromosomal aneusomies. However, data analysis is currently not standardised and little is known about its sensitivity and specificity. Methods: We have developed an electronic data analysis tool for gene-mapping SNP arrays, a software tool that we call Copy Number Variation Finder (CNVF). Using CNVF, we analysed 104 unselected patients with mental retardation of unknown origin with a genechip mapping 100K SNP array and established an optimised set of analysis parameters. Results: We detected deletions as small as 20 kb when covered by at least three single-nucleotide polymorphisms (SNPs) and duplications as small as 150 kb when covered by at least six SNPs, with only one false-positive signal in six patients. In 9.1% of patients, we detected apparently disease-causing or de novo aberrations ranging in size from 0.4 to 14 Mb. Morphological anomalies in patients with de novo aberrations were equal to that of unselected patients when measured with de Vries score. Conclusion: Our standardised CNVF data analysis tool is easy to use and has high sensitivity and specificity. As some genomic regions are covered more densely than others, the genome-wide resolution of the 100K array is about 400–500 kb for deletions and 900–1000 kb for duplications. The detection rate of about 10% of de novo aberrations is independent of selection of patients for particular features. The incidental finding in two patients of heterozygosity for the 250 kb recurrent deletion at the NPH1 locus, associated with autosomal recessive juvenile nephronophthisis, which was inherited from a healthy parent, highlights the fact that inherited aberrations might be disease-related even though not causal for mental retardation.
American Journal of Human Genetics | 2003
Sarah A. Shoichet; Kirsten Hoffmann; Corinna Menzel; Udo Trautmann; Bettina Moser; Maria Hoeltzenbein; Bernard Echenne; Michael Partington; Hans van Bokhoven; Claude Moraine; Jean-Pierre Fryns; Jamel Chelly; Hans-Dieter Rott; Hans-Hilger Ropers; Vera M. Kalscheuer
Nonsyndromic X-linked mental retardation (MRX) is defined by an X-linked inheritance pattern of low IQ, problems with adaptive behavior, and the absence of additional specific clinical features. The 13 MRX genes identified to date account for less than one-fifth of all MRX, suggesting that numerous gene defects cause the disorder in other families. In a female patient with severe nonsyndromic mental retardation and a de novo balanced translocation t(X;7)(p11.3;q11.21), we have cloned the DNA fragment that contains the X-chromosomal and the autosomal breakpoint. In silico sequence analysis provided no indication of a causative role for the chromosome 7 breakpoint in mental retardation (MR), whereas, on the X chromosome, a zinc-finger gene, ZNF41, was found to be disrupted. Expression studies indicated that ZNF41 transcripts are absent in the patient cell line, suggesting that the mental disorder in this patient results from loss of functional ZNF41. Moreover, screening of a panel of patients with MRX led to the identification of two other ZNF41 mutations that were not found in healthy control individuals. A proline-to-leucine amino acid exchange is present in affected members of one family with MRX. A second family carries an intronic splice-site mutation that results in loss of specific ZNF41 splice variants. Wild-type ZNF41 contains a highly conserved transcriptional repressor domain that is linked to mechanisms of chromatin remodeling, a process that is defective in various other forms of MR. Our results suggest that ZNF41 is critical for cognitive development; further studies aim to elucidate the specific mechanisms by which ZNF41 alterations lead to MR.
Clinical Genetics | 2008
Anita Rauch; R. A. Pfeiffer; Udo Trautmann; Thomas Liehr; Hans-Dieter Rott; R. Ulmer
In seven cases additional minute chromosomes studied by FISH were identified as no. 3, 11, 15, 18, 21 and X. Findings were unexpected except for partial trisomy 21 in an adolescent with minor features of Downs syndrome. Moreover, an i(18p) in a mentally retarded dysmorphic child and an idic(15) in a child with Fallot tetralogy was confirmed. In a child with r(21), a supernumerary marker was shown to be derived from no. 21, while in the mother an additional marker idic(22) was noted.
Journal of Clinical Investigation | 2011
Michael S. Kraft; Ion C. Cirstea; Anne K. Voss; Tim Thomas; Ina Goehring; Bilal N. Sheikh; Lavinia Gordon; Hamish S. Scott; Gordon K. Smyth; Mohammad Reza Ahmadian; Udo Trautmann; Martin Zenker; Marco Tartaglia; Arif B. Ekici; André Reis; Helmuth G. Dörr; Anita Rauch; Christian Thiel
Epigenetic regulation of gene expression, through covalent modification of histones, is a key process controlling growth and development. Accordingly, the transcription factors regulating these processes are important targets of genetic diseases. However, surprisingly little is known about the relationship between aberrant epigenetic states, the cellular process affected, and their phenotypic consequences. By chromosomal breakpoint mapping in a patient with a Noonan syndrome-like phenotype that encompassed short stature, blepharoptosis, and attention deficit hyperactivity disorder, we identified haploinsufficiency of the histone acetyltransferase gene MYST histone acetyltransferase (monocytic leukemia) 4 (MYST4), as the underlying cause of the phenotype. Using acetylation, whole genome expression, and ChIP studies in cells from the patient, cell lines in which MYST4 expression was knocked down using siRNA, and the Myst4 querkopf mouse, we found that H3 acetylation is important for neural, craniofacial, and skeletal morphogenesis, mainly through its ability to specifically regulating the MAPK signaling pathway. This finding further elucidates the complex role of histone modifications in mammalian development and adds what we believe to be a new mechanism to the pathogenic phenotypes resulting from misregulation of the RAS signaling pathway.
American Journal of Medical Genetics | 1998
Anita Rauch; M. Hofbeck; Georg Leipold; Jens Klinge; Udo Trautmann; Michaela Kirsch; Helmut Singer; R. A. Pfeiffer
Interruption of the aortic arch (IAA) is a severe malformation of the heart with known association to DiGeorge syndrome (DGS) and 22q11.2 hemizygosity. The aim of this study was to establish incidence and significance of 22q11.2 hemizygosity in an unbiased sample of patients with IAA. All 15 children with IAA who were referred to our hospital in a 3-year period were tested by chromosome and fluorescence in situ hybridization (FISH) analysis with the probes D22S75, Tuplel, and cHKAD26 and by a set of 10 simple tandem repeat polymorphic (STRP) markers. In nine of 11 children with IAA type B, 22q11.2 hemizygosity was demonstrated by FISH and STRP analysis, but in none of the four children with type A. In all but one child, deletion size was approximately 3 Mb. The girl with the smaller deletion of approximately 1.5 Mb differed because of an Ullrich-Turner syndrome-like phenotype and severe T-cell defect. Additionally, in one patient with phenotypic signs of DGS, a small deletion distal to the known DGS region containing the marker D22S308 was suspected by STRP analysis. One deletion was shown to be inherited from a healthy father and one IAA type A recurred in a sib. T-cell anomalies were evident in eight of the nine children with classical deletion, five of whom suffered also from hypoparathyroidism. With respect to cause and clinical course, IAA type A and B were shown to represent different entities. This study showed that variable symptoms of 22q11.2 hemizygosity may cluster.
Clinical Genetics | 2008
Thomas Liehr; R. A. Pfeiffer; Udo Trautmann
Three children are reported with typical cat eye syndrome (CES) and three more children with partial CES because of absence of coloboma, in which the supernumerary marker chromosome was studied by FISH. Using a genomic library, and also a centromeric and particularly a cosmid probe of 22q11, partial tetrasomy was shown in all cases.