Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ueon Sang Shin is active.

Publication


Featured researches published by Ueon Sang Shin.


Journal of Tissue Engineering | 2010

Fibroblast Growth Factors: Biology, Function, and Application for Tissue Regeneration

Ye-Rang Yun; Jong Eun Won; Eunyi Jeon; Sujin Lee; Wonmo Kang; Hyejin Jo; Jun Hyeog Jang; Ueon Sang Shin; Hae-Won Kim

Fibroblast growth factors (FGFs) that signal through FGF receptors (FGFRs) regulate a broad spectrum of biological functions, including cellular proliferation, survival, migration, and differentiation. The FGF signal pathways are the RAS/MAP kinase pathway, PI3 kinase/AKT pathway, and PLCγ pathway, among which the RAS/MAP kinase pathway is known to be predominant. Several studies have recently implicated the in vitro biological functions of FGFs for tissue regeneration. However, to obtain optimal outcomes in vivo, it is important to enhance the half-life of FGFs and their biological stability. Future applications of FGFs are expected when the biological functions of FGFs are potentiated through the appropriate use of delivery systems and scaffolds. This review will introduce the biology and cellular functions of FGFs and deal with the biomaterials based delivery systems and their current applications for the regeneration of tissues, including skin, blood vessel, muscle, adipose, tendon/ligament, cartilage, bone, tooth, and nerve tissues.


Journal of Biomedical Materials Research Part A | 2012

Size-dependent cellular toxicity of silver nanoparticles†

Tae-Hyun Kim; Meeju Kim; Hyung-Seok Park; Ueon Sang Shin; Myoung-Seon Gong; Hae-Won Kim

Silver nanoparticles (AgNPs) have found a variety of uses including biomedical materials; however, studies of the cytotoxicity of AgNPs by size effects are only in the beginning stage. In this study, we examined the size-dependent cellular toxicity of AgNPs using three different characteristic sizes (∼ 10, 50, and 100 nm) against several cell lines including MC3T3-E1 and PC12. The cytotoxic effect determined based on the cell viability, intracellular reactive oxygen species generation, lactate dehydrogenase release, ultrastructural changes in cell morphology, and upregulation of stress-related genes (ho-1 and MMP-3) was fairly size- and dose-dependent. In particular, AgNPs stimulated apoptosis in the MC3T3-E1 cells, but induced necrotic cell death in the PC12 cells. Furthermore, the smallest sized AgNPs (10 nm size) had a greater ability to induce apoptosis in the MC3T3-E1 cells than the other sized AgNPs (50 and 100 nm). These data suggest that the AgNPs-induced cytotoxic effects against tissue cells are particle size-dependent, and thus, the particle size needs careful consideration in the design of the nanoparticles for biomedical uses.


Acta Biomaterialia | 2011

Direct deposited porous scaffolds of calcium phosphate cement with alginate for drug delivery and bone tissue engineering

Gil-Su Lee; Jeong-Hui Park; Ueon Sang Shin; Hae-Won Kim

This study reports the preparation of novel porous scaffolds of calcium phosphate cement (CPC) combined with alginate, and their potential usefulness as a three-dimensional (3-D) matrix for drug delivery and tissue engineering of bone. An α-tricalcium phosphate-based powder was mixed with sodium alginate solution and then directly injected into a fibrous structure in a Ca-containing bath. A rapid hardening reaction of the alginate with Ca(2+) helps to shape the composite into a fibrous form with diameters of hundreds of micrometers, and subsequent pressing in a mold allows the formation of 3-D porous scaffolds with different porosity levels. After transformation of the CPC into a calcium-deficient hydroxyapatite phase in simulated biological fluid the scaffold was shown to retain its mechanical stability. During the process biological proteins, such as bovine serum albumin and lysozyme, used as model proteins, were observed to be effectively loaded onto and released from the scaffolds for up to more than a month, proving the efficacy of the scaffolds as a drug delivering matrix. Mesenchymal stem cells (MSCs) were isolated from rat bone marrow and then cultured on the CPC-alginate porous scaffolds to investigate the ability to support proliferation of cells and their subsequent differentiation along the osteogenic lineage. It was shown that MSCs increasingly actively populated and also permeated into the porous network with time of culture. In particular, cells cultured within a scaffold with a relatively high porosity level showed favorable proliferation and osteogenic differentiation. An in vivo pilot study of the CPC-alginate porous scaffolds after implantation into the rat calvarium for 6 weeks revealed the formation of new bone tissue within the scaffold, closing the defect almost completely. Based on these results, the newly developed CPC-alginate porous scaffolds could be potentially useful as a 3-D matrix for drug delivery and tissue engineering of bone.


Neuroscience Letters | 2011

Neurite outgrowth of dorsal root ganglia neurons is enhanced on aligned nanofibrous biopolymer scaffold with carbon nanotube coating.

Guang-Zhen Jin; Meeju Kim; Ueon Sang Shin; Hae-Won Kim

Nerve regeneration and functional recovery have been a major issue following injury of nerve tissues. Electrospun nanofibers are known to be suitable scaffolds for neural tissue engineering applications. In addition, modified substrates often provide better environments for neurite outgrowth. This study was conducted to determine if multi-walled carbon nanotubes (MWCNTs)-coated electrospun poly (l-lactic acid-co-caprolactone) (PLCL) nanofibers improved the neurite outgrowth of rat dorsal root ganglia (DRG) neurons and focal adhesion kinase (FAK) expression of PC-12 cells. To accomplish this, the DRG neurons in either uncoated PLCL scaffolds (PLCL group) or MWCNTs-coated PLCL scaffolds (PLCL/CNT group) were cultured for nine days. MWCNTs-coated PLCL scaffolds showed improved neurite outgrowth of DRG neurons. Moreover, FAK expression was up-regulated in the PLCL/CNT group when compared to the PLCL group in a non-time-dependent manner. These findings suggest that MWCNTs-coated nanofibrous scaffolds may be alternative materials for nerve regeneration and functional recovery in neural tissue engineering.


Journal of Tissue Engineering | 2010

Effects on Growth and Osteogenic Differentiation of Mesenchymal Stem Cells by the Zinc-Added Sol-Gel Bioactive Glass Granules

Sun-Ae Oh; So-Hee Kim; Jong-Eun Won; Jung-Ju Kim; Ueon Sang Shin; Hae-Won Kim

Responses of mesenchymal stem cells (MSCs) cultured with zinc-added (2 and 5%) bioactive glass granules were evaluated in terms of cell growth and osteogenic differentiation. MSCs were cultured with different quantities (3, 10 and 30) of glass granules for up to 21 days in the osteogenic medium. Cell growth was stimulated by a small quantity of glasses, particularly those that contained zinc. Osteogenic differentiation, as assessed by alkaline phosphatase activity (ALP) activity, was significantly enhanced by the glasses, particularly with large quantities of glass and for prolonged culturing. Expression of bone-sialo protein (BSP) was significantly up-regulated around the bioactive glass granules. Moreover, the zinc addition significantly altered the ALP and BSP depending on the culture time and glass quantity. Cellular mineralization was improved in all glass samples, and particularly in the 2% zinc-glass. Taken together, the zinc addition to bioactive glass induced the MSCs growth and their osteogenic differentiation, at least to the level of zinc-free glass, and with even higher level observed depending on the quantity and culture time. These findings indicate that the zinc addition to bioactive glass may be useful in development of biomaterials for the stimulation of adult stem cell in bone tissue engineering.


Acta Biomaterialia | 2011

Functional composite nanofibers of poly(lactide-co-caprolactone) containing gelatin-apatite bone mimetic precipitate for bone regeneration

Seung-Hwan Jegal; Jeong-Hui Park; Joong-Hyun Kim; Tae-Hyun Kim; Ueon Sang Shin; Tae-Il Kim; Hae-Won Kim

Functional nanofibrous materials composed of gelatin-apatite-poly(lactide-co-caprolactone) (PLCL) were produced using an electrospinning process. A gelatin-apatite precipitate, which mimicked bone extracellular matrix, was homogenized in an organic solvent using various concentrations of PLCL. A fibrous structure with approximate diameters of a few hundred nanometers was successfully generated. Apatite nanocrystallines were found to be effectively distributed within the polymeric matrix of the gelatin-PLCL. The addition of a small amount of gelatin-apatite into PLCL significantly improved the tensile strength of the nanofiber by a factor of 1.8. Moreover, tissue cell growth on the composite nanofiber was enhanced. Osteogenic differentiation of the cells was significantly stimulated by the composite nanofiber compared with the pure PLCL nanofiber. When implanted in a rat calvarium for 6weeks the composite nanofiber supported defect closure and new bone formation better than the pure PLCL nanofiber, as deduced from micro-computed tomography and histological analyses. Based on these results, the gelatin-apatite-PLCL composite nanofiber developed in this study is considered to be potentially useful as a bone tissue regeneration matrix.


ACS Applied Materials & Interfaces | 2014

Multifunctional Hybrid Nanocarrier: Magnetic CNTs Ensheathed with Mesoporous Silica for Drug Delivery and Imaging System

Rajendra K. Singh; Kapil D. Patel; Jung-Ju Kim; Tae-Hyun Kim; Joong-Hyun Kim; Ueon Sang Shin; Eunjung Lee; Jonathan C. Knowles; Hae-Won Kim

Here we communicate the development of a novel multifunctional hybrid nanomaterial, magnetic carbon nanotubes (CNTs) ensheathed with mesoporous silica, for the simultaneous applications of drug delivery and imaging. Magnetic nanoparticles (MNPs) were first decorated onto the multiwalled CNTs, which was then layered with mesoporous silica (mSiO2) to facilitate the loading of bioactive molecules to a large quantity while exerting magnetic properties. The hybrid nanomaterial showed a high mesoporosity due to the surface-layered mSiO2, and excellent magnetic properties, including magnetic resonance imaging in vitro and in vivo. The mesoporous and magnetic hybrid nanocarriers showed high loading capacity for therapeutic molecules including drug gentamicin and protein cytochrome C. In particular, genetic molecule siRNA was effectively loaded and then released over a period of days to a week. Furthermore, the hybrid nanocarriers exhibited a high cell uptake rate through magnetism, while eliciting favorable biological efficacy within the cells. This novel hybrid multifunctional nanocarrier may be potentially applicable as drug delivery and imaging systems.


Journal of Tissue Engineering | 2011

Carbon Nanotubes in Nanocomposites and Hybrids with Hydroxyapatite for Bone Replacements

Ueon Sang Shin; Il-Kyu Yoon; Gil-Su Lee; Won-Cheoul Jang; Jonathan C. Knowles; Hae-Won Kim

Hydroxyapatite (HA), as a bone mineral component, has been an attractive bioceramic for the reconstruction of hard tissues. However, its poor mechanical properties, including low fracture toughness and tensile strength, have been a significant challenge to the application of HA for the replacement of load-bearing and/or large bone defects. Among materials studied to reinforce HA, carbon nanotubes (CNTs: single-walled or multiwalled) have recently gained significant attention because of their unprecedented mechanical properties (high strength and toughness) and physicochemical properties (high surface area, electrical and thermal conductivity, and low weight). Here, we review recent studies of the organization of HA-CNTs at the nanoscale, with a particular emphasis on the functionalization of CNTs and their dispersion within an HA matrix and induction of HA mineralization. The organization of CNTs and HA implemented at the nanoscale can further be developed in the form of coatings, nanocomposites, and hybrid powders to enable potential applications in hard tissue reconstruction.


ACS Applied Materials & Interfaces | 2016

Triple Hit with Drug Carriers: pH- and Temperature-Responsive Theranostics for Multimodal Chemo- and Photothermal Therapy and Diagnostic Applications.

Seonmi Baek; Rajendra K. Singh; Tae-Hyun Kim; Jae-Won Seo; Ueon Sang Shin; Wojciech Chrzanowski; Hae-Won Kim

Currently there is a strong need for new drug delivery systems, which enable targeted and controlled function in delivering drugs while satisfying highly sensitive imaging modality for early detection of the disease symptoms and damaged sites. To meet these criteria we develop a system that integrates therapeutic and diagnostic capabilities (theranostics). Importantly, therapeutic efficacy of the system is enhanced by exploiting synergies between nanoparticles, drug, and hyperthermia. At the core of our innovation is near-infrared (NIR) responsive gold nanorods (Au) coated with drug reservoirs--mesoporous silica shell (mSi)--that is capped with thermoresponsive polymer. Such design of theranostics allows the detection of the system using computed tomography (CT), while finely controlled release of the drug is achieved by external trigger, NIR light irradiation--ON/OFF switch. Doxorubicin (DOX) was loaded into mSi formed on the gold core (Au@mSi-DOX). Pores were then capped with the temperature-sensitive poly(N-isopropylacrylamide)-based N-butyl imidazolium copolymer (poly(NIPAAm-co-BVIm)) resulting in a hybrid system-Au@mSi-DOX@P. A 5 min exposure to NIR induces polymer transition, which triggers the drug release (pores opening), increases local temperature above 43 °C (hyperthermia), and upregulates particle uptake (polymer becomes hydrophilic). The DOX release is also triggered by drop in pH enabling localized drug release when particles are taken up by cancer cells. Importantly, the synergies between chemo- and photothermal therapy for DOX-loaded theranostics were confirmed. Furthermore, higher X-ray attenuation value of the theranostics was confirmed via X-ray CT test indicating that the nanoparticles act as contrast agent and can be detected by CT.


Journal of Biomedical Materials Research Part B | 2011

Biomedical nanocomposites of poly(lactic acid) and calcium phosphate hybridized with modified carbon nanotubes for hard tissue implants

Hae-Hyoung Lee; Ueon Sang Shin; Jae-Ho Lee; Hae-Won Kim

Degradable polymer-based materials are attractive in orthopedics and dentistry as an alternative to metallic implants for use as bone fixatives. Herein, a degradable polymer poly(lactic acid) (PLA) was combined with novel hybrid nanopowder of carbon nanotubes (CNTs)-calcium phosphate (CP) for this application. In particular, CNTs-CP hybrid nanopowders (0.1 and 0.25% CNTs) were prepared from the solution of ionically modified CNTs (mCNTs), which was specifically synthesized to be well-dispersed and thus to effectively adsorb onto the CP nanoparticles. The mCNTs-CP hybrid nanopowders were then mixed with PLA (up to 50%) to produce mCNTs-CP-PLA nanocomposites. The mechanical tensile strength of the nanocomposites was significantly improved by the addition of mCNTs-CP hybrid nanopowders. Moreover, nanocomposites containing low concentration of mCNTs (0.1%) showed significantly stimulated biological responses including cell proliferation and osteoblastic differentiation in terms of gene and protein expressions. Based on this study, the addition of novel mCNT-CP hybrid nanopowders to PLA biopolymer may be considered a new material choice for developing hard tissue implants.

Collaboration


Dive into the Ueon Sang Shin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge